A new proof of the GHS minimum spanning tree algorithm

被引:0
|
作者
Moses, Yoram [1 ]
Shimony, Benny [1 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper provides a proof of correctness for the celebrated Minimum Spanning Tree protocol of Gallager, Humblet and Spira [GHS83]. Both the protocol and the quest for a natural correctness proof have had considerable impact on the literature concerning network protocols and verification. We present an invariance proof that is based on a new intermediate-level abstraction of the protocol. A central role of the intermediate-level configurations in the proof is to facilitate the statement of invariants and other properties of the executions of GHS at the low level. This provides a powerful tool for both the statement and the proof of properties of the algorithm. The result is the first proof that follows the spirit of the informal arguments made in the original paper.
引用
收藏
页码:120 / +
页数:2
相关论文
共 50 条
  • [1] A new algorithm for the minimum spanning tree verification problem
    Williamson, Matthew
    Subramani, K.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 61 (01) : 189 - 204
  • [2] A new algorithm for the minimum spanning tree verification problem
    Matthew Williamson
    K. Subramani
    [J]. Computational Optimization and Applications, 2015, 61 : 189 - 204
  • [3] A new efficient parallel algorithm for minimum spanning tree
    de Alencar Vasconcellos, Jucele Franca
    Caceres, Edson Norberto
    Mongelli, Henrique
    Song, Siang Wun
    [J]. 2018 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2018), 2018, : 107 - 114
  • [4] An optimal minimum spanning tree algorithm
    Pettie, S
    Ramachandran, V
    [J]. JOURNAL OF THE ACM, 2002, 49 (01) : 16 - 34
  • [5] An optimal minimum spanning tree algorithm
    Pettie, S
    Ramachandran, V
    [J]. AUTOMATA LANGUAGES AND PROGRAMMING, 2000, 1853 : 49 - 60
  • [6] PROBABILISTIC MINIMUM SPANNING TREE ALGORITHM
    ROHLF, FJ
    [J]. INFORMATION PROCESSING LETTERS, 1978, 7 (01) : 44 - 48
  • [7] A FAST ALGORITHM FOR THE MINIMUM SPANNING TREE
    SURAWEERA, F
    [J]. COMPUTERS IN INDUSTRY, 1989, 13 (02) : 181 - 185
  • [8] An Efficient Minimum Spanning Tree Algorithm
    Abdullah-Al Mamun
    Rajasekaran, Sanguthevar
    [J]. 2016 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATION (ISCC), 2016, : 1047 - 1052
  • [9] A new evolutionary algorithm for the bi-objective minimum spanning tree
    Rocha, Daniel A. M.
    Goldbarg, Elizabeth F. G.
    Goldbarg, Marco C.
    [J]. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2007, : 735 - 740
  • [10] A minimum spanning tree equipartition algorithm for microaggregation
    Panagiotakis, Costas
    Tziritas, Georgios
    [J]. JOURNAL OF APPLIED STATISTICS, 2015, 42 (04) : 846 - 865