Probability Density Functions of Channel Estimation for MLSE in Optical Communications

被引:0
|
作者
Lu, Li [1 ,2 ]
Lei, Jianming [1 ]
Ju, Peijian [1 ]
Lei, Yu [1 ]
Peng, Zhan [1 ]
Zou, Xuecheng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Elect Sci & Technol, Wuhan 430074, Peoples R China
[2] Air Force Radar Acad, Wuhan 430019, Peoples R China
关键词
Probability Density Functions; Viterbi; MLSE; Channel Estimation; Optical Communications;
D O I
10.1117/12.904492
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose an effective possibility density functions method of channel estimation with Viterbi algorithm based on transitions. We also investigate the performance of the electronic dispersion compensation schemes via this new channel estimation method. The schemes Simulation results show that it exhibits the similar performance with the sophisticated MLSE scheme.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Effects of viscoelasticity on the probability density functions in turbulent channel flow
    Samanta, Gaurab
    Housiadas, Kostas D.
    Handler, Robert A.
    Beris, Antony N.
    PHYSICS OF FLUIDS, 2009, 21 (11) : 1 - 23
  • [22] A joint channel estimation and timing adjustment for adaptive MLSE
    Song, HK
    Cho, WD
    IEICE TRANSACTIONS ON COMMUNICATIONS, 1998, E81B (11) : 2242 - 2244
  • [23] Flexible estimation of joint probability and joint cumulative density functions
    Scarpiniti, M.
    Parisi, R.
    Uncini, A.
    ELECTRONICS LETTERS, 2010, 46 (15) : 1084 - 1085
  • [24] Estimation of probability density functions from limited training samples
    Lee, C
    Choi, E
    Proceedings of the Seventh IASTED International Conference on Computer Graphics and Imaging, 2004, : 458 - 462
  • [25] Simple and effective connectionist nonparametric estimation of probability density functions
    Trentin, Edmondo
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, PROCEEDINGS, 2006, 4087 : 1 - 10
  • [26] Probability Density Function Analysis for Optimization of Underwater Optical Communications Systems
    Bernotas, Marius
    Nelson, Charles
    OCEANS 2015 - MTS/IEEE WASHINGTON, 2015,
  • [27] Probability Density Estimation Using Two New Kernel Functions
    Rodchuen, Manachai
    Suwattee, Prachoom
    CHIANG MAI JOURNAL OF SCIENCE, 2011, 38 (01): : 1 - 12
  • [28] Nonparametric estimation of probability density functions of random persistence diagrams
    Maroulas, Vasileios
    Mike, Joshua L.
    Oballe, Christopher
    Journal of Machine Learning Research, 2019, 20
  • [29] A multirate DSP model for estimation of discrete probability density functions
    Yoon, BJ
    Vaidyanathan, PP
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (01) : 252 - 264
  • [30] PROBABILITY DENSITY-ESTIMATION USING ELLIPTIC BASIS FUNCTIONS
    JOHNSTON, LPM
    KRAMER, MA
    AICHE JOURNAL, 1994, 40 (10) : 1639 - 1649