Overexpression of TaHSF3 in Transgenic Arabidopsis Enhances Tolerance to Extreme Temperatures

被引:73
|
作者
Zhang, Shuangxi [1 ,2 ,3 ]
Xu, Zhao-Shi [2 ]
Li, Pansong [1 ]
Yang, Le [2 ]
Wei, Yiqin [3 ]
Chen, Ming [2 ]
Li, Liancheng [2 ]
Zhang, Gaisheng [1 ]
Ma, Youzhi [2 ]
机构
[1] Northwest A&F Univ, Coll Agr, Yangling 712100, Shaanxi, Peoples R China
[2] Chinese Acad Agr Sci CAAS, Natl Key Facil Crop Gene Resources & Genet Improv, Key Lab Biol & Genet Improvement Triticeae Crops, Inst Crop Sci,Minist Agr, Beijing 100081, Peoples R China
[3] Ningxia Acad Agr Sci, Inst Crop Sci, Ningxia 750105, Peoples R China
基金
中国国家自然科学基金;
关键词
Expression pattern; Heat shock transcription factor; Subcellular localization; Extreme temperature tolerance; Wheat; Arabidopsis; STRESS TRANSCRIPTION FACTORS; HEAT-SHOCK FACTORS; MOLECULAR CHAPERONES; FACTOR FAMILY; RESPONSIVE GENES; OVER-EXPRESSION; PROTEIN-KINASES; IDENTIFICATION; HSFA1; REGULATOR;
D O I
10.1007/s11105-012-0546-z
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Heat shock factors (HSFs) in plants regulate heat stress response by mediating expression of a set of heat shock protein (HSP) genes. In the present study, we isolated a novel heat shock gene, TaHSF3, encoding a protein of 315 amino acids in wheat. Phylogenetic analysis showed that TaHSF3 belonged to HSF class B2. Subcellular localization analysis indicated that TaHSF3 localized in nuclei. TaHSF3 was highly expressed in wheat spikes and showed intermediate expression levels in roots, stems, and leaves under normal conditions. It was highly upregulated in wheat seedlings by heat and cold and to a lesser extent by drought and NaCl and ABA treatments. Overexpression of TaHSF3 in Arabidopsis enhanced tolerance to extreme temperatures. Frequency of survival of three TaHSF3 transgenic Arabidopsis lines was 75-91 % after heat treatment and 85-95 % after freezing treatment compared to 25 and 10 %, respectively, in wild-type plants (WT). Leaf chlorophyll contents of the transformants were higher (0.52-0.67 mg/g) than WT (0.35 mg/g) after heat treatment, and the relative electrical conductivities of the transformants after freezing treatment were lower (from 17.56 to 18.6 %) than those of WT (37.5 %). The TaHSF3 gene from wheat therefore confers tolerance to extreme temperatures in transgenic Arabidopsis by activating HSPs, such as HSP70.
引用
收藏
页码:688 / 697
页数:10
相关论文
共 50 条
  • [41] Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis
    Teame Gereziher Mehari
    Yuqing Hou
    Yanchao Xu
    Muhammad Jawad Umer
    Margaret Linyerera Shiraku
    Yuhong Wang
    Heng Wang
    Renhai Peng
    Yangyang Wei
    Xiaoyan Cai
    Zhongli Zhou
    Fang Liu
    BMC Genomics, 23
  • [42] Overexpression of a western white pine PR10 protein enhances cold tolerance in transgenic Arabidopsis
    Liu, Jun-Jun
    Ekramoddoullah, Abul K. M.
    Hawkins, Barbara
    Shah, Saleh
    PLANT CELL TISSUE AND ORGAN CULTURE, 2013, 114 (02) : 217 - 223
  • [43] Overexpression of the Jojoba Aquaporin Gene, ScPIP1, Enhances Drought and Salt Tolerance in Transgenic Arabidopsis
    Wang, Xing
    Gao, Fei
    Bing, Jie
    Sun, Weimin
    Feng, Xiuxiu
    Ma, Xiaofeng
    Zhou, Yijun
    Zhang, Genfa
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (01):
  • [44] Overexpression of the Arabidopsis AtEm6 gene enhances salt tolerance in transgenic rice cell lines
    Tang, Wei
    Page, Michael
    PLANT CELL TISSUE AND ORGAN CULTURE, 2013, 114 (03) : 339 - 350
  • [45] Overexpression of PavbHLH28 from Prunus avium enhances tolerance to cold stress in transgenic Arabidopsis
    Xuejiao Cao
    Zhuang Wen
    Tianjiao Shen
    Xiaowei Cai
    Qiandong Hou
    Chunqiong Shang
    Guang Qiao
    BMC Plant Biology, 23
  • [46] Overexpression of a western white pine PR10 protein enhances cold tolerance in transgenic Arabidopsis
    Jun-Jun Liu
    Abul K. M. Ekramoddoullah
    Barbara Hawkins
    Saleh Shah
    Plant Cell, Tissue and Organ Culture (PCTOC), 2013, 114 : 217 - 223
  • [47] Overexpression of the Arabidopsis AtEm6 gene enhances salt tolerance in transgenic rice cell lines
    Wei Tang
    Michael Page
    Plant Cell, Tissue and Organ Culture (PCTOC), 2013, 114 : 339 - 350
  • [48] Overexpression of the intertidal seagrass 14-3-3 gene ZjGRF1 enhances the tolerance of transgenic Arabidopsis to salt and osmotic stress
    Siting Chen
    Guanglong Qiu
    Plant Biotechnology Reports, 2022, 16 : 697 - 707
  • [49] Overexpression of the intertidal seagrass 14-3-3 gene ZjGRF1 enhances the tolerance of transgenic Arabidopsis to salt and osmotic stress
    Chen, Siting
    Qiu, Guanglong
    PLANT BIOTECHNOLOGY REPORTS, 2022, 16 (06) : 697 - 707
  • [50] Overexpression of the genes coding ascorbate peroxidase from Brassica campestris enhances heat tolerance in transgenic Arabidopsis thaliana
    Chiang, C. M.
    Chien, H. L.
    Chen, L. F. O.
    Hsiung, T. C.
    Chiang, M. C.
    Chen, S. P.
    Lin, K. H.
    BIOLOGIA PLANTARUM, 2015, 59 (02) : 305 - 315