Real Time Detection of Malware Activities by Analyzing Darknet Traffic Using Graphical Lasso

被引:7
|
作者
Han, Chansu [1 ,2 ]
Shimamura, Jumpei [3 ]
Takahashi, Takeshi [1 ]
Inoue, Daisuke [1 ]
Kawakita, Masanori [2 ,4 ]
Takeuchi, Jun'ichi [1 ,2 ]
Nakao, Koji [1 ]
机构
[1] Natl Inst Informat & Commun Technol, Koganei, Tokyo, Japan
[2] Kyushu Univ, Fukuoka, Japan
[3] Clwit Inc, Tokyo, Japan
[4] Nagoya Univ, Nagoya, Aichi, Japan
来源
2019 18TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS/13TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING (TRUSTCOM/BIGDATASE 2019) | 2019年
关键词
Real-time detection; Malware; Network scan; Darknet; Cooperation; Outlier detection;
D O I
10.1109/TrustCom/BigDataSE.2019.00028
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent malware evolutions have rendered cyberspace less secure, and we are currently witnessing an increasing number of severe security incidents. To minimize the impact of malware activities, it is important to detect them promptly and precisely. We have been working on this issue by monitoring traffic coming into unused IP address spaces, i.e., the darknet. On our darknet, Internet-wide scans from malware are observed as if they are coordinated or working cooperatively. Based on this observation, our earlier method monitored network traffic arriving at our darknet, estimated the degree of cooperation between each pair of the source hosts, and detected significant changes in cooperation among source hosts as a sign of newly activated malware activities. However, this method does not work in real time, and thus, it is impractical. In this study, we extend our earlier work and propose an online processing algorithm, making it possible to detect malware activities in real time. In our evaluation, we measure the detection performance of the proposed method with our proof-of-concept implementation to demonstrate its feasibility and effectiveness in terms of detecting the rise of new malware activities in real time.
引用
收藏
页码:144 / 151
页数:8
相关论文
共 50 条
  • [21] Android traffic malware analysis and detection using ensemble classifier
    Mohanraj, A.
    Sivasankari, K.
    Ain Shams Engineering Journal, 2024, 15 (12)
  • [22] A Machine Learning Approach for Real Time Android Malware Detection
    Ngoc C Le
    Tien-Manh Nguyen
    Trang Truong
    Ngoc-Dam Nguyen
    Tra Ngo
    2020 RIVF INTERNATIONAL CONFERENCE ON COMPUTING & COMMUNICATION TECHNOLOGIES (RIVF 2020), 2020, : 347 - 352
  • [23] A framework for metamorphic malware analysis and real-time detection
    Alam, Shahid
    Horspool, R. Nigel
    Traore, Issa
    Sogukpinar, Ibrahim
    COMPUTERS & SECURITY, 2015, 48 : 212 - 233
  • [24] A study of analyzing network traffic as images in real-time
    Kim, SS
    Reddy, ALN
    IEEE INFOCOM 2005: THE CONFERENCE ON COMPUTER COMMUNICATIONS, VOLS 1-4, PROCEEDINGS, 2005, : 2056 - 2067
  • [25] Real-Time Traffic Sign Detection and Recognition using CNN
    Santos, D.
    Silva, F.
    Pereira, D.
    Almeida, L.
    Artero, A.
    Piteri, M.
    de Albuquerque, V
    IEEE LATIN AMERICA TRANSACTIONS, 2020, 18 (03) : 522 - 529
  • [26] Real time detection of malicious DoH traffic using statistical analysis
    Moure-Garrido, Marta
    Campo, Celeste
    Garcia-Rubio, Carlos
    COMPUTER NETWORKS, 2023, 234
  • [27] Real-time traffic event detection using Twitter data
    Jones, Angelica Salas
    Georgakis, Panagiotis
    Petalas, Yannis
    Suresh, Renukappa
    INFRASTRUCTURE ASSET MANAGEMENT, 2018, 5 (03) : 77 - 84
  • [28] Real Time Traffic Incident Detection by Using Twitter Stream Analysis
    Afzaal, Maryam
    Nazir, Nazifa
    Akbar, Khadija
    Perveen, Sidra
    Farooq, Umer
    Ashraf, M. Khalid
    Fayyaz, Zonia
    HUMAN SYSTEMS ENGINEERING AND DESIGN, IHSED2018, 2019, 876 : 620 - 626
  • [29] The Real-Time Detection of Traffic Participants Using YOLO Algorithm
    Corovic, Aleksa
    Ilic, Velibor
    Duric, Sinisa
    Marijan, Malisa
    Pavkovic, Bogdan
    2018 26TH TELECOMMUNICATIONS FORUM (TELFOR), 2018, : 731 - 734
  • [30] Real Time Traffic Light Detection and Classification using Deep Learning
    Ennahhal, Zakaria
    Berrada, Ismail
    Fardousse, Khalid
    2019 INTERNATIONAL CONFERENCE ON WIRELESS NETWORKS AND MOBILE COMMUNICATIONS (WINCOM), 2019, : 116 - 122