Multisensor data fusion using fuzzy concepts: Application to land-cover classification using ERS-1/JERS-1 SAR composites

被引:52
|
作者
Solaiman, B [1 ]
Pierce, LE
Ulaby, FT
机构
[1] Ecole Natl Super Telecommun, Dept Image & Traitement Informat, F-29285 Brest, France
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Radiat Lab, Ann Arbor, MI 48109 USA
来源
关键词
classification; confidence maps; fuzzy sets; multisensor data fusion;
D O I
10.1109/36.763295
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this study, a fuzzy-based multisensor data fusion classifier is de developed and applied to land cover classification using ERS-1/JERS-1 SAR composites. This classifier aims at the integration of multisensor and contextual information in a single and a homogeneous framework. Initial fuzzy membership maps (FMM's) to different thematic classes are first calculated using classes and sensors a priori knowledge. These FMM's are then iteratively updated using spatial contextual information. A classification rule is associated to different iterations. This classifier has the following advantages: first, due to the use of fuzzy concepts, it has the flexibility of integrating multisensor/contextual and a priori information. Second, the classification results consist of thematic as well as confidence maps. The confidence map (a classification certainty map representing the degree of certainty in the thematic map) constitutes an important issue in order to evaluate the classification process complexity and the validity of the assumptions. The application of this classifier using ERS1/JERS-1 SAR composites is shown to be promising.
引用
收藏
页码:1316 / 1326
页数:11
相关论文
共 50 条
  • [31] DEM generation using ERS-1/2 interferometric SAR data
    Shi, SP
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 788 - 790
  • [32] Temporal monitoring of soil moisture using ERS-1 SAR data
    Griffiths, GH
    Wooding, MG
    HYDROLOGICAL PROCESSES, 1996, 10 (09) : 1127 - 1138
  • [33] Land-cover Classification Based on SAR Data Using Superpixel and Cosine Similarity
    Mao, Xueyue
    Lu, Yilong
    Xiao, Xiao
    PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS (ICCEM 2020), 2020, : 92 - 94
  • [34] Accurate attitude estimation using ERS-1 SAR raw data
    Eldhuset, K
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1996, 17 (14) : 2827 - 2844
  • [35] Retrieval biomass of a large Venezuelan pine plantation using JERS-1 SAR data
    Castel, T
    Guerra, F
    Ruiz, A
    Albarran, V
    Caraglio, Y
    Houllier, F
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 396 - 398
  • [36] Detection and classification of ocean eddies using ERS-1 and aircraft SAR images
    Lyzenga, D
    Wackerman, C
    THIRD ERS SYMPOSIUM ON SPACE AT THE SERVICE OF OUR ENVIRONMENT, VOLS. II & III, 1997, 414 : 1267 - 1271
  • [37] A method to estimate forest biomass and its application to monitor Mongolian Taiga using JERS-1 SAR data
    Tsolmon, R
    Tateishi, R
    Tetuko, JSS
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (22) : 4971 - 4978
  • [38] Monitoring of new plantation development in tropical rain forests using JERS-1 SAR data
    Takeuchi, S
    Suga, Y
    Oguro, Y
    Konishi, T
    REMOTE SENSING FOR LAND SURFACE CHARACTERISATION, 2000, 26 (07): : 1151 - 1154
  • [39] Spectral angle mapper classification and vegetation indices analysis for winter cover monitoring using JERS-1 OPS data
    Kim, C
    Cho, S
    IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 1977 - 1979
  • [40] Study on the spectral quality preservation derived from multisensor image fusion techniques between JERS-1 SAR and landsat TM data
    Rokhmatuloh
    Tateishi, R
    Wikantika, K
    Munadi, K
    Aslam, MA
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 3656 - 3658