The dynamics of traveling waves for a nonlinear Belousov-Zhabotinskii system ?

被引:32
|
作者
Du, Zengji [1 ]
Qiao, Qi [1 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
关键词
Belousov-Zhabotinskii system; Traveling wave; Asymptotic behavior; Heteroclinic orbit; Geometric singular; perturbation; REACTION-DIFFUSION SYSTEMS; MODEL; EXISTENCE; FRONTS; OSCILLATIONS; STABILITY; PULSES; DELAY;
D O I
10.1016/j.jde.2020.05.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the existence of traveling wave fronts in a Belousov-Zhabotinskii system with delay. By traveling wave transformation and time scale transformation, we change the Belousov- Zhabotinskii system with delay into a singularly perturbed differential system. By applying geometric singular perturbation theory, we construct a locally invariant manifold for the associated traveling wave equation and obtain the traveling wave fronts for the equation by using the Fredholm orthogonality. Finally, we discuss the asymptotic behaviors of traveling wave solutions by applying the asymptotic theory.
引用
收藏
页码:7214 / 7230
页数:17
相关论文
共 50 条