Modeling, Design & Characterization of A Novel Passive Variable Stiffness Joint (pVSJ)

被引:0
|
作者
Awad, Mohammad I. [1 ]
Gan, Dongming [1 ]
Cempini, Marco [2 ,3 ]
Cortese, Mario [4 ]
Vitiello, Nicola [4 ,5 ]
Dias, Jorge [1 ,6 ,7 ]
Dario, Paolo [4 ]
Seneviratne, Lakmal [1 ,8 ]
机构
[1] Khalifa Univ Sci Technol & Res, Khalifa Univ Robot Inst, Abu Dhabi, U Arab Emirates
[2] Northwestern Univ, Rehabil Inst Chicago, Chicago, IL 60610 USA
[3] Northwestern Univ, Feinberg Sch Med, Chicago, IL 60610 USA
[4] BioRobot Inst Scuola Super St Anna, Pontedera, Italy
[5] Fdn Don Carlo Gnocchi, Florence, Italy
[6] Univ Coimbra, Inst Syst & Robot, Coimbra, Portugal
[7] Univ Coimbra, Fac Sci & Technol, Coimbra, Portugal
[8] Kings Collage London, London, England
关键词
ACTUATOR; ROBOTS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present the design and characterization of a novel Passive Variable Stiffness Joint (pVSJ). pVSJ is the proof of concept of a passive revolute joint with controllable variable stiffness. The current design is intended to be a bench-test for future development towards applications in haptic teleoperation purposed exoskeletons. The main feature of the pVSJ is its capability of varying the stiffness with infinite range based on a simple mechanical system. Moreover, the joint can rotate freely at the zero stiffness case without any limitation. The stiffness varying mechanism consists of two torsional springs, mounted with an offset from the pVSJ rotation center and coupled with the joint shaft by an idle roller. The position of the roller between the pVSJ rotation center and the spring's center is controlled by a linear sliding actuator fitted on the chassis of the joint. The variation of the output stiffness is obtained by changing the distance from the roller-springs contact point to the joint rotation center (effective arm). If this effective arm is null, the stiffness of the joint will be zero. The stiffness increases to reach high stiffness values when the effective arm approaches its maximum value, bringing the roller close to the torsional springs' center. The experimental results matched with the physical-based modeling of the pVSJ in terms of stiffness variation curve, stiffness dependency upon the springs' elasticity, joint deflection and the spring's deflection.
引用
收藏
页码:323 / 329
页数:7
相关论文
共 50 条
  • [21] Design and Analysis of a Novel Variable Stiffness Joint Based on Leaf Springs
    Wang, Caidong
    Gao, Yafeng
    Xu, Yapeng
    Wang, Xinjie
    Wang, Liangwen
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [22] Design and Dynamic Modeling of Variable Stiffness Joint Actuator Based on Archimedes Spiral
    Wang, Wei
    Zhao, Yanwei
    Li, Yangmin
    IEEE ACCESS, 2018, 6 : 43798 - 43807
  • [23] A Variable-Stiffness Joint Based on Electromagnetic Force Attraction: Modeling and Design
    Filomeno Amador, Luis D.
    Castillo Castaneda, Eduardo
    Carbone, Giuseppe
    Laribi, Med Amine
    ROBOTICS AND MECHATRONICS, ISRM 2024, 2024, 158 : 67 - 76
  • [24] Design of an electromagnetic prismatic joint with variable stiffness
    Zhao, Yong
    Yu, Jue
    Wang, Hao
    Chen, Genliang
    Lai, Xinmin
    INDUSTRIAL ROBOT-AN INTERNATIONAL JOURNAL, 2017, 44 (02) : 222 - 230
  • [25] A Novel Soft Wrist Joint with Variable Stiffness
    Yang, Gang
    Li, Bing
    Zhang, Yang
    Pan, Dayu
    Huang, Hailin
    INTELLIGENT ROBOTICS AND APPLICATIONS (ICIRA 2022), PT II, 2022, 13456 : 346 - 356
  • [26] Design of a pneumatic variable stiffness ankle joint
    Zang, Xizhe
    Song, Jiaqi
    Liu, Yixiang
    Zhou, Xinyu
    2018 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SAFETY FOR ROBOTICS (ISR), 2018, : 291 - 296
  • [27] A novel revolute joint of variable stiffness with reconfigurability
    Li, Zhongyi
    Bai, Shaoping
    MECHANISM AND MACHINE THEORY, 2019, 133 : 720 - 736
  • [28] Design and Characterization of a Novel Mechanism of Multiple Joint Stiffness(MMJS']JS)
    Medina, Jose
    Lozano, Pedro
    Jardon, Alberto
    Balaguer, Carlos
    2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, : 2444 - 2451
  • [29] Mechanical design,modeling,and identification for a novel antagonistic variable stiffness dexterous finger
    Handong HU
    Yiwei LIU
    Zongwu XIE
    Jianfeng YAO
    Hong LIU
    Frontiers of Mechanical Engineering, 2022, 17 (03) : 63 - 78
  • [30] Design and Modeling of a Novel Biomimetic Variable Stiffness Actuator Inspired by Skeletal Muscle
    Song, Yaowei
    Guan, Yisheng
    Xiang, Chaoqun
    Wang, Bin
    Liang, Zhihao
    Wang, Jie
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE-ROBIO 2021), 2021, : 124 - 129