Fully automated method for dental age estimation using the ACF detector and deep learning

被引:5
|
作者
Pintana, Patipan [1 ]
Upalananda, Witsarut [2 ]
Saekho, Suwit [1 ]
Yarach, Uten [1 ]
Wantanajittikul, Kittichai [1 ]
机构
[1] Chiang Mai Univ, Fac Associated Med Sci, Dept Radiol Technol, Chiang Mai 50200, Thailand
[2] Prince Songkla Univ, Fac Dent, Dept Oral Diagnost Sci, Sect Oral & Maxillofacial Radiol, Hat Yai, Thailand
关键词
Aggregate channel features detector; Convolutional neural network; Dental age estimation; Forensic sciences; Medical image classification; CHRONOLOGICAL AGE; OPEN APICES; 3RD MOLARS; ACCURACY; CHILDREN; ADULTS; TOOTH;
D O I
10.1186/s41935-022-00314-1
中图分类号
DF [法律]; D9 [法律]; R [医药、卫生];
学科分类号
0301 ; 10 ;
摘要
Background: Dental age estimation plays an important role in identifying an unknown person. In forensic science, estimating age with high accuracy depends on the experience of the practitioner. Previous studies proposed classification of tooth development of the mandibular third molar by following Demirjian's method, which is useful for dental age estimation. Although stage of tooth growth is very helpful in assessing age estimation, it must be performed manually. The drawback of this procedure is its need for skilled observers to carry out the tasks precisely and reproducibly because it is quite detailed. Therefore, this research aimed to apply computer-aid methods for reducing time and subjectivity in dental age estimation by using dental panoramic images based on Demirjian's method. Dental panoramic images were collected from persons aged 15 to 23 years old. In accordance with Demirjian's method, this study focused only on stages D to H of tooth development, which were discovered in the 15- to 23-year age range. The aggregate channel features detector was applied automatically to localize and crop only the lower left mandibular third molar in panoramic images. Then, the convolutional neural network model was applied to classify cropped images into D to H stages. Finally, the classified stages were used to estimate dental age. Results: Experimental results showed that the proposed method in this study can localize the lower left mandibular third molar automatically with 99.5% accuracy, and training in the convolutional neural network model can achieve 83.25% classification accuracy using the transfer learning strategy with the Resnet50 network. Conclusion: In this work, the aggregate channel features detector and convolutional neural network model were applied to localize a specific tooth in a panoramic image and identify the developmental stages automatically in order to estimate the age of the subjects. The proposed method can be applied in clinical practice as a tool that helps clinicians to reduce the time and subjectivity for dental age estimation.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Fully Automated Breast Density Segmentation and Classification Using Deep Learning
    Saffari, Nasibeh
    Rashwan, Hatem A.
    Abdel-Nasser, Mohamed
    Kumar Singh, Vivek
    Arenas, Meritxell
    Mangina, Eleni
    Herrera, Blas
    Puig, Domenec
    DIAGNOSTICS, 2020, 10 (11)
  • [22] Automated detection of dental restorations using deep learning on panoramic radiographs
    Celik, Berrin
    Celik, Mahmut Emin
    DENTOMAXILLOFACIAL RADIOLOGY, 2022, 51 (08)
  • [23] Automated feature detection in dental periapical radiographs by using deep learning
    Khan, Hassan Aqeel
    Haider, Muhammad Ali
    Ansari, Hassan Ali
    Ishaq, Hamna
    Kiyani, Amber
    Sohail, Kanwal
    Muhammad, Muhammad
    Khurram, Syed Ali
    ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2021, 131 (06): : 711 - 720
  • [24] Automated Ultrasound Doppler Angle Estimation Using Deep Learning
    Patil, Nilesh
    Anand, Ajay
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 28 - 31
  • [25] Automated handcrafted features with deep learning based age group estimation model using facial profiles
    Katta Nagaraju
    M. Babu Reddy
    Multimedia Tools and Applications, 2024, 83 : 42149 - 42164
  • [26] Automated handcrafted features with deep learning based age group estimation model using facial profiles
    Nagaraju, Katta
    Reddy, M. Babu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (14) : 42149 - 42164
  • [27] Deep Learning for age Estimation
    Ammous, Donia
    Kammoun, Fahmi
    Masmoudi, Nouri
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES, SIGNAL AND IMAGE PROCESSING, ATSIP 2024, 2024, : 322 - 329
  • [28] A fully-automated paper ECG digitisation algorithm using deep learning
    Huiyi Wu
    Kiran Haresh Kumar Patel
    Xinyang Li
    Bowen Zhang
    Christoforos Galazis
    Nikesh Bajaj
    Arunashis Sau
    Xili Shi
    Lin Sun
    Yanda Tao
    Harith Al-Qaysi
    Lawrence Tarusan
    Najira Yasmin
    Natasha Grewal
    Gaurika Kapoor
    Jonathan W. Waks
    Daniel B. Kramer
    Nicholas S. Peters
    Fu Siong Ng
    Scientific Reports, 12
  • [29] Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning
    Schlegl, Thomas
    Waldstein, Sebastian M.
    Bogunovic, Hrvoje
    Endstrasser, Franz
    Sadeghipour, Amir
    Philip, Ana-Maria
    Podkowinski, Dominika
    Gerendas, Bianca S.
    Langs, Georg
    Schmidt-Erfurth, Ursula
    OPHTHALMOLOGY, 2018, 125 (04) : 549 - 558
  • [30] A fully-automated paper ECG digitisation algorithm using deep learning
    Wu, Huiyi
    Patel, Kiran Haresh Kumar
    Li, Xinyang
    Zhang, Bowen
    Galazis, Christoforos
    Bajaj, Nikesh
    Sau, Arunashis
    Shi, Xili
    Sun, Lin
    Tao, Yanda
    Al-Qaysi, Harith
    Tarusan, Lawrence
    Yasmin, Najira
    Grewal, Natasha
    Kapoor, Gaurika
    Waks, Jonathan W.
    Kramer, Daniel B.
    Peters, Nicholas S.
    Ng, Fu Siong
    SCIENTIFIC REPORTS, 2022, 12 (01)