Integrable Nonlocal Nonlinear Schrodinger Equation

被引:699
|
作者
Ablowitz, Mark J. [1 ]
Musslimani, Ziad H. [2 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
INVERSE SCATTERING TRANSFORM;
D O I
10.1103/PhysRevLett.110.064105
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new integrable nonlocal nonlinear Schrodinger equation is introduced. It possesses a Lax pair and an infinite number of conservation laws and is PT symmetric. The inverse scattering transform and scattering data with suitable symmetries are discussed. A method to find pure soliton solutions is given. An explicit breathing one soliton solution is found. Key properties are discussed and contrasted with the classical nonlinear Schrodinger equation. DOI: 10.1103/PhysRevLett.110.064105
引用
收藏
页数:5
相关论文
共 50 条
  • [41] ON THE CAUCHY PROBLEM FOR THE NONLOCAL DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    de Moura, Roger Peres
    Pastor, Ademir
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2011, 9 (01) : 63 - 80
  • [42] Statistical Solution for the Nonlocal Discrete Nonlinear Schrodinger Equation
    Li, Congcong
    Li, Chunqiu
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (03)
  • [43] Conservation laws of the generalized nonlocal nonlinear Schrodinger equation
    Ouyang Shi-Gen
    Guo Qi
    Wu Li-Jun
    Lan Sheng
    CHINESE PHYSICS, 2007, 16 (08): : 2331 - 2337
  • [44] Rogue wave patterns in the nonlocal nonlinear Schrodinger equation
    Zhang, Guangxiong
    Wu, Chengfa
    PHYSICS OF FLUIDS, 2024, 36 (11)
  • [45] On Solutions of an Extended Nonlocal Nonlinear Schrodinger Equation in Plasmas
    Huang, Yehui
    Jing, Hongqing
    Li, Min
    Ye, Zhenjun
    Yao, Yuqin
    MATHEMATICS, 2020, 8 (07)
  • [46] A survey on nonlinear Schrodinger equation with growing nonlocal nonlinearity
    Maeda, Masaya
    Masaki, Satoshi
    NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 64 : 273 - 280
  • [47] Nonlinear nonlocal Schrodinger equation in the context of quantum mechanics
    Filippov, AE
    PHYSICS LETTERS A, 1996, 215 (1-2) : 32 - 39
  • [48] The resonant nonlinear Schrodinger equation via an integrable capillarity model
    Rogers, C
    Schief, WK
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1999, 114 (12): : 1409 - 1412
  • [49] An Integrable Discrete Generalized Nonlinear Schrodinger Equation and Its Reductions
    Li Hong-Min
    Li Yu-Qi
    Chen Yong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 62 (05) : 641 - 648
  • [50] CLOSED FORM SOLUTIONS TO THE INTEGRABLE DISCRETE NONLINEAR SCHRODINGER EQUATION
    Demontis, Francesco
    van der Mee, Cornelis
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2012, 19 (02) : 136 - 157