Modeling Deep Burn TRISO particle nuclear fuel

被引:13
|
作者
Besmann, T. M. [1 ]
Stoller, R. E. [1 ]
Samolyuk, G. [1 ]
Schuck, P. C. [1 ]
Golubov, S. I. [1 ]
Rudin, S. P. [3 ]
Wills, J. M. [3 ]
Coe, J. D. [3 ]
Wirth, B. D. [2 ]
Kim, S. [4 ]
Morgan, D. D. [4 ]
Szlufarska, I. [4 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Knoxville, TN 37996 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[4] Univ Wisconsin, Madison, WI 53706 USA
关键词
FISSION-PRODUCT RELEASE; RESEARCH-AND-DEVELOPMENT; THERMAL-CONDUCTIVITY; INTERFACE REACTIONS; THIN-FILMS; AB-INITIO; TEMPERATURE; ZRC; IRRADIATION; PALLADIUM;
D O I
10.1016/j.jnucmat.2012.06.041
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel, the fission product's attack on the SiC coating layer, as well as fission product diffusion through an alternative coating layer, ZrC. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:181 / 189
页数:9
相关论文
共 50 条
  • [21] Model of Failure Probability of UN-kernel TRISO Fuel Particle
    Qian L.
    Chen W.
    Yu H.
    Sun Y.
    Xiong Q.
    Deng J.
    Liu Y.
    Du S.
    Huang T.
    Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2022, 56 (09): : 1924 - 1931
  • [22] Modeling fission product diffusion in TRISO fuel particles with BISON
    Hales, Jason D.
    Jiang, Wen
    Toptan, Aysenur
    Gamble, Kyle A.
    Journal of Nuclear Materials, 2021, 548
  • [23] Modeling fission product diffusion in TRISO fuel particles with BISON
    Hales, Jason D.
    Jiang, Wen
    Toptan, Aysenur
    Gamble, Kyle A.
    JOURNAL OF NUCLEAR MATERIALS, 2021, 548
  • [24] Residual stresses in as-manufactured TRISO Coated Particle Fuel (CPF)
    Battistini, Angelo
    Haynes, Thomas A.
    Shepherd, Daniel
    Wenman, Mark R.
    JOURNAL OF NUCLEAR MATERIALS, 2023, 586
  • [25] Fluence calculations for the TRISO- particle fuel ION implantation experiment
    Krajewska, Zuzanna M.
    Gorkiewicz, Michal
    Gudowski, Waclaw
    PROGRESS IN NUCLEAR ENERGY, 2023, 162
  • [26] Fuel performance simulations of TRISO particle geometries derived from XCT
    Poschmann, M.
    Prudil, A.
    Osmond, R.
    JOURNAL OF NUCLEAR MATERIALS, 2025, 608
  • [27] Design and fabrication of TRISO based ZrC fuel for nuclear thermal propulsion
    Gaffin, Neal
    Ade, Brian
    Crotzer, Tom
    Hinklin, Thomas
    Jolly, Brian
    Spencer, Barry
    Trammell, Michael
    Terrani, Kurt
    JOURNAL OF NUCLEAR MATERIALS, 2025, 605
  • [28] Multidimensional multiphysics modeling of TRISO particle fuel with SiC/ZrC coating using modified fission gas release model
    Zhang, Cheng
    Wu, Yingwei
    Liu, Shichao
    Chen, Ping
    Li, Wei
    Deng, Chaoqun
    Zhang, Jing
    Su, G. H.
    Qiu, Suizheng
    Wu, Junmei
    ANNALS OF NUCLEAR ENERGY, 2020, 145
  • [29] The first irradiation testing and PIE or TRISO-coated particle fuel in Korea
    Kim, Bong Goo
    Yeo, Sunghwan
    Jeong, Kyung-Chai
    Kim, Yeon-Ku
    Lee, Young Woo
    Cho, Moon Sung
    NUCLEAR ENGINEERING AND DESIGN, 2018, 329 : 34 - 45
  • [30] Encapsulation of TRISO particle fuel in durable soda-lime-silicate glasses
    Heath, Paul G.
    Corkhill, Claire L.
    Stennett, Martin C.
    Hand, Russell J.
    Meyer, Willem C. H. M.
    Hyatt, Neil C.
    JOURNAL OF NUCLEAR MATERIALS, 2013, 436 (1-3) : 139 - 149