A novel F, Ce-codoped TiO2 photocatalyst with mesoporous structure was successfully fabricated by ultrasound irradiation. The obtained catalysts were characterized by X-ray diffraction, Fourier transform infrared spectrum, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectra, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, photoluminescence spectroscopy, and N-2 adsorption. The photocatalytic activity of the samples was evaluated by degradation of acid orange II under UV light irradiation. Results showed that F and Ce can be successfully doped into TiO2 under ultrasonic irradiation conditions. All the single F or Ce-doped TiO2 and F, Ce-codoped TiO2 have shown good mesoporous structures, and this can be contributed to the ultrasound-induced aggregation effect. The F, Ce-codoped TiO2 photocatalyst exhibits much higher photocatalytic activity than that of pure, single F or Ce-doped TiO2, which could be attributed to that F, Ce-codoping increases its surface hydroxyl groups and effectively reduces the photo-generated electron/hole pair recombination rate.