Diamond ablators for inertial confinement fusion

被引:37
|
作者
Biener, J [1 ]
Mirkarimi, PB
Tringe, JW
Baker, SL
Wang, Y
Kucheyev, SO
Teslich, NE
Wu, KJJ
Hamza, AV
Wild, C
Woerner, E
Koidl, P
Bruehne, K
Fecht, HJ
机构
[1] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA
[2] Fraunhofer Inst Appl Solid State Phys, D-7800 Freiburg, Germany
[3] Univ Ulm, Div Mat, Ulm, Germany
关键词
D O I
10.13182/FST49-737
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Diamond has a unique combination of physical properties for the inertial confinement fusion ablator application, such as appropriate optical properties, high atomic density, high yield strength, and high thermal conductivity. Here, we present a feasible concept for fabrication of diamond ablator shells. The fabrication of diamond capsules is a multi-step process which involves diamond chemical vapor deposition on silicon mandrels followed by polishing, microfabrication of holes, and removing of the silicon mandrel by an etch process. We also discuss the pros and cons of coarse-grained optical quality and nanocrystalline chemical vapor deposition diamond films for the ablator application.
引用
收藏
页码:737 / 742
页数:6
相关论文
共 50 条
  • [1] Diamond spheres for inertial confinement fusion
    Biener, J.
    Ho, D. D.
    Wild, C.
    Woerner, E.
    Biener, M. M.
    El-dasher, B. S.
    Hicks, D. G.
    Eggert, J. H.
    Celliers, P. M.
    Collins, G. W.
    Teslich, N. E., Jr.
    Kozioziemski, B. J.
    Haan, S. W.
    Hamza, A. V.
    [J]. NUCLEAR FUSION, 2009, 49 (11)
  • [2] Tracer spectroscopy diagnostics of doped ablators in inertial confinement fusion experiments on OMEGA
    Cohen, DH
    MacFarlane, JJ
    Jaanimagi, P
    Landen, OL
    Haynes, DA
    Conners, DS
    Penrose, KL
    Shupe, NC
    [J]. PHYSICS OF PLASMAS, 2004, 11 (05) : 2702 - 2708
  • [3] Implosion Experiments using Glass Ablators for Direct-Drive Inertial Confinement Fusion
    Smalyuk, V. A.
    Betti, R.
    Delettrez, J. A.
    Glebov, V. Yu.
    Meyerhofer, D. D.
    Radha, P. B.
    Regan, S. P.
    Sangster, T. C.
    Sanz, J.
    Seka, W.
    Stoeckl, C.
    Yaakobi, B.
    Frenje, J. A.
    Li, C. K.
    Petrasso, R. D.
    Seguin, F. H.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (16)
  • [4] Fill tube dynamics in inertial confinement fusion implosions with high density carbon ablators
    Baker, K. L.
    Thomas, C. A.
    Dittrich, T. R.
    Landen, O.
    Kyrala, G.
    Casey, D. T.
    Weber, C. R.
    Milovich, J.
    Woods, D. T.
    Schneider, M.
    Khan, S. F.
    Spears, B. K.
    Zylstra, A.
    Kong, C.
    Crippen, J.
    Alfonso, N.
    Yeamans, C. B.
    Moody, J. D.
    Moore, A. S.
    Meezan, N. B.
    Pak, A.
    Fittinghoff, D. N.
    Volegov, P. L.
    Hurricane, O.
    Callahan, D.
    Patel, P.
    Amendt, P.
    [J]. PHYSICS OF PLASMAS, 2020, 27 (11)
  • [5] Microphysics of shock-grain interaction for inertial confinement fusion ablators in a fluid approach
    Li, G. J.
    Davidovits, S.
    [J]. PHYSICAL REVIEW E, 2024, 110 (03)
  • [6] Ion separation effects in mixed-species ablators for inertial-confinement-fusion implosions
    Amendt, Peter
    Bellei, Claudio
    Ross, J. Steven
    Salmonson, Jay
    [J]. PHYSICAL REVIEW E, 2015, 91 (02):
  • [7] PREPARATION OF GERMANIUM DOPED PLASMA-POLYMERIZED COATINGS AS INERTIAL CONFINEMENT FUSION TARGET ABLATORS
    BRUSASCO, R
    SACULLA, M
    COOK, R
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1995, 13 (03): : 948 - 951
  • [8] High quality hollow diamond shell for inertial confinement fusion
    Wang, Tao
    Wang, Jian
    Liu, Yansong
    He, Xiaoshan
    He, Zhibing
    [J]. DIAMOND AND RELATED MATERIALS, 2023, 135
  • [9] Natural diamond detector based spectrometers for magnetic and inertial confinement fusion
    Krasilnikov, AV
    Alekseyev, AG
    Amosov, VN
    Kaschuck, YA
    Rastyagaev, IN
    [J]. ADVANCED DIAGNOSTICS FOR MAGNETIC AND INERTIAL FUSION, 2002, : 153 - 156
  • [10] INERTIAL CONFINEMENT FUSION
    NAKAI, S
    [J]. NUCLEAR FUSION, 1991, 31 (04) : 783 - 788