Microphysics of shock-grain interaction for inertial confinement fusion ablators in a fluid approach

被引:0
|
作者
Li, G. J. [1 ]
Davidovits, S. [2 ]
机构
[1] UCLA, Math Dept, Los Angeles, CA 90095 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
NATIONAL IGNITION FACILITY; DENSITY; PROPAGATION; MICROSCOPY; MODEL;
D O I
10.1103/PhysRevE.110.035206
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Ablator materials used for inertial confinement fusion, such as high-density carbon (HDC) and beryllium, have grain structure which may lead to small-scale density nonuniformity and the generation of perturbations when the materials are shocked and compressed. Here, we use a combination of a linear theory of shock interaction with density nonuniformity [Velikovich et al., Phys. Plasmas 14, 072706 (2007)] and numerical simulations to study shock interaction with a model representation of HDC grains. While the shock-grain interaction is nonlinear, the linear theory shows some key features of the shock-grain interaction, which also hold for the (nonlinear) simulations. The postshock perturbations are made up of sonic reflections off of grain boundaries and vorticity deposition along them, with the latter dominating the perturbed energy content. The mean (per mass) postshock perturbed kinetic energy decreases with increasing grain size, but energy will be deposited at increasing spatial scale. From the perspective of the postshock perturbed energy, the detailed linear theory largely supports a proposed method [S. Davidovits et al., Phys. Plasmas 29, 112708 (2022)] for deresolving the grains (in a similar grains model) that treats the grains statistically. Our simulation results highlight the influence of thermal conduction on the perturbation dynamics at grain scales.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Diamond ablators for inertial confinement fusion
    Biener, J
    Mirkarimi, PB
    Tringe, JW
    Baker, SL
    Wang, Y
    Kucheyev, SO
    Teslich, NE
    Wu, KJJ
    Hamza, AV
    Wild, C
    Woerner, E
    Koidl, P
    Bruehne, K
    Fecht, HJ
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2006, 49 (04) : 737 - 742
  • [2] Microphysics studies for direct-drive inertial confinement fusion
    Hu, S. X.
    Goncharov, V. N.
    Radha, P. B.
    Regan, S. P.
    Campbell, E. M.
    [J]. NUCLEAR FUSION, 2019, 59 (03)
  • [3] Tracer spectroscopy diagnostics of doped ablators in inertial confinement fusion experiments on OMEGA
    Cohen, DH
    MacFarlane, JJ
    Jaanimagi, P
    Landen, OL
    Haynes, DA
    Conners, DS
    Penrose, KL
    Shupe, NC
    [J]. PHYSICS OF PLASMAS, 2004, 11 (05) : 2702 - 2708
  • [4] Interaction physics for the shock ignition scheme of inertial confinement fusion targets
    Depierreux, S.
    Goyon, C.
    Lewis, K.
    Bandulet, H.
    Michel, D. T.
    Loisel, G.
    Yahia, V.
    Tassin, V.
    Stenz, C.
    Borisenko, N. G.
    Nazarov, W.
    Limpouch, J.
    Masson-Laborde, P. E.
    Loiseau, P.
    Casanova, M.
    Nicolai, Ph
    Hueller, S.
    Pesme, D.
    Riconda, C.
    Tikhonchuk, V. T.
    Labaune, C.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (12)
  • [5] Implosion Experiments using Glass Ablators for Direct-Drive Inertial Confinement Fusion
    Smalyuk, V. A.
    Betti, R.
    Delettrez, J. A.
    Glebov, V. Yu.
    Meyerhofer, D. D.
    Radha, P. B.
    Regan, S. P.
    Sangster, T. C.
    Sanz, J.
    Seka, W.
    Stoeckl, C.
    Yaakobi, B.
    Frenje, J. A.
    Li, C. K.
    Petrasso, R. D.
    Seguin, F. H.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (16)
  • [6] Fill tube dynamics in inertial confinement fusion implosions with high density carbon ablators
    Baker, K. L.
    Thomas, C. A.
    Dittrich, T. R.
    Landen, O.
    Kyrala, G.
    Casey, D. T.
    Weber, C. R.
    Milovich, J.
    Woods, D. T.
    Schneider, M.
    Khan, S. F.
    Spears, B. K.
    Zylstra, A.
    Kong, C.
    Crippen, J.
    Alfonso, N.
    Yeamans, C. B.
    Moody, J. D.
    Moore, A. S.
    Meezan, N. B.
    Pak, A.
    Fittinghoff, D. N.
    Volegov, P. L.
    Hurricane, O.
    Callahan, D.
    Patel, P.
    Amendt, P.
    [J]. PHYSICS OF PLASMAS, 2020, 27 (11)
  • [7] LASER APPROACH TO INERTIAL CONFINEMENT FUSION
    PERKINS, RB
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (04): : 598 - 598
  • [8] ALTERNATIVE APPROACH TO INERTIAL CONFINEMENT FUSION
    WINTERBERG, F
    [J]. PHYSICS LETTERS A, 1993, 172 (06) : 443 - 446
  • [9] Ion separation effects in mixed-species ablators for inertial-confinement-fusion implosions
    Amendt, Peter
    Bellei, Claudio
    Ross, J. Steven
    Salmonson, Jay
    [J]. PHYSICAL REVIEW E, 2015, 91 (02):
  • [10] PREPARATION OF GERMANIUM DOPED PLASMA-POLYMERIZED COATINGS AS INERTIAL CONFINEMENT FUSION TARGET ABLATORS
    BRUSASCO, R
    SACULLA, M
    COOK, R
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1995, 13 (03): : 948 - 951