SMALL-SCALE GRADIENTS OF CHARGED PARTICLES IN THE HELIOSPHERIC MAGNETIC FIELD

被引:11
|
作者
Guo, Fan [1 ,2 ,3 ]
Giacalone, Joe [2 ,3 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA
[3] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA
来源
ASTROPHYSICAL JOURNAL | 2014年 / 780卷 / 01期
关键词
cosmic rays; diffusion; Sun: flares; Sun: magnetic fields; turbulence; SOLAR-ENERGETIC PARTICLES; PERPENDICULAR TRANSPORT; COSMIC-RAYS; TURBULENCE; PROPAGATION; DIFFUSION; FLUCTUATIONS; SPECTRA; RANGE; LINES;
D O I
10.1088/0004-637X/780/1/16
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using numerical simulations of charged-particles propagating in the heliospheric magnetic field, we study small-scale gradients, or "dropouts," in the intensity of solar energetic particles seen at 1 AU. We use two turbulence models, the foot-point random motion model and the two-component model, to generate fluctuating magnetic fields similar to spacecraft observations at 1 AU. The turbulence models include a Kolmogorov-like magnetic field power spectrum containing a broad range of spatial scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We release energetic protons (20 keV-10 MeV) from a spatially compact and instantaneous source. The trajectories of energetic charged particles in turbulent magnetic fields are numerically integrated. Spacecraft observations are mimicked by collecting particles in small windows when they pass the windows at a distance of 1 AU. We show that small-scale gradients in the intensity of energetic particles and velocity dispersions observed by spacecraft can be reproduced using the foot-point random motion model. However, no dropouts are seen in simulations using the two-component magnetic turbulence model. We also show that particle scattering in the solar wind magnetic field needs to be infrequent for intensity dropouts to form.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Cosmic ray scattering in an anisotropic random small-scale magnetic field
    Mel'nikov, YP
    GEOMAGNETISM AND AERONOMY, 2004, 44 (02) : 156 - 162
  • [42] Small-scale Induced Large-scale Transitions in Solar Wind Magnetic Field
    Alberti, Tommaso
    Faranda, Davide
    Donner, Reik, V
    Caby, Theophile
    Carbone, Vincenzo
    Consolini, Giuseppe
    Dubrulle, Berengere
    Vaienti, Sandro
    ASTROPHYSICAL JOURNAL LETTERS, 2021, 914 (01)
  • [43] Influence of small-scale EM and HM on the growth of large-scale magnetic field
    Park, Kiwan
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 444 (04) : 3837 - 3844
  • [44] The Heliospheric Magnetic Field
    Owens, Mathew J.
    Forsyth, Robert J.
    LIVING REVIEWS IN SOLAR PHYSICS, 2013, 10 (05)
  • [45] The heliospheric magnetic field
    Balogh, A
    SPACE SCIENCE REVIEWS, 1996, 78 (1-2) : 15 - 28
  • [46] The Heliospheric Magnetic Field
    Balogh, Andre
    Erdos, Geza
    SPACE SCIENCE REVIEWS, 2013, 176 (1-4) : 177 - 215
  • [47] Small-Scale Solar Magnetic Fields
    A. G. de Wijn
    J. O. Stenflo
    S. K. Solanki
    S. Tsuneta
    Space Science Reviews, 2009, 144 : 275 - 315
  • [48] Cancelation of small-scale magnetic features
    Kaithakkal, A. J.
    Solanki, S. K.
    ASTRONOMY & ASTROPHYSICS, 2019, 622
  • [49] Small-Scale Solar Magnetic Fields
    de Wijn, A. G.
    Stenflo, J. O.
    Solanki, S. K.
    Tsuneta, S.
    SPACE SCIENCE REVIEWS, 2009, 144 (1-4) : 275 - 315
  • [50] Feedback of a small-scale magnetic dynamo
    Nazarenko, SV
    Falkovich, GE
    Galtier, S
    PHYSICAL REVIEW E, 2001, 63 (01):