SMALL-SCALE GRADIENTS OF CHARGED PARTICLES IN THE HELIOSPHERIC MAGNETIC FIELD

被引:11
|
作者
Guo, Fan [1 ,2 ,3 ]
Giacalone, Joe [2 ,3 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA
[3] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA
来源
ASTROPHYSICAL JOURNAL | 2014年 / 780卷 / 01期
关键词
cosmic rays; diffusion; Sun: flares; Sun: magnetic fields; turbulence; SOLAR-ENERGETIC PARTICLES; PERPENDICULAR TRANSPORT; COSMIC-RAYS; TURBULENCE; PROPAGATION; DIFFUSION; FLUCTUATIONS; SPECTRA; RANGE; LINES;
D O I
10.1088/0004-637X/780/1/16
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using numerical simulations of charged-particles propagating in the heliospheric magnetic field, we study small-scale gradients, or "dropouts," in the intensity of solar energetic particles seen at 1 AU. We use two turbulence models, the foot-point random motion model and the two-component model, to generate fluctuating magnetic fields similar to spacecraft observations at 1 AU. The turbulence models include a Kolmogorov-like magnetic field power spectrum containing a broad range of spatial scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We release energetic protons (20 keV-10 MeV) from a spatially compact and instantaneous source. The trajectories of energetic charged particles in turbulent magnetic fields are numerically integrated. Spacecraft observations are mimicked by collecting particles in small windows when they pass the windows at a distance of 1 AU. We show that small-scale gradients in the intensity of energetic particles and velocity dispersions observed by spacecraft can be reproduced using the foot-point random motion model. However, no dropouts are seen in simulations using the two-component magnetic turbulence model. We also show that particle scattering in the solar wind magnetic field needs to be infrequent for intensity dropouts to form.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Small-scale gradients and large-scale diffusion of charged particles in the heliospheric magnetic field
    Giacalone, J
    Jokipii, JR
    Mazur, JE
    [J]. ASTROPHYSICAL JOURNAL, 2000, 532 (01): : L75 - L78
  • [2] The heliospheric magnetic field probed with fast charged particles
    Giacalone, J
    [J]. SOLAR-TERRESTRIAL MAGNETIC ACTIVITY AND SPACE ENVIRONMENT, 2002, 14 : 217 - 223
  • [3] Heliospheric evolution of solar wind small-scale magnetic flux ropes
    Cartwright, M. L.
    Moldwin, M. B.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
  • [4] NUMERICAL SIMULATION OF THE MASS TRANSFER OF MAGNETIC SPECIES AT ELECTRODES EXPOSED TO SMALL-SCALE GRADIENTS OF THE MAGNETIC FIELD
    Mutschke, G.
    Tschulik, K.
    Uhlemann, M.
    Froehlich, J.
    [J]. MAGNETOHYDRODYNAMICS, 2015, 51 (02): : 369 - 374
  • [5] Heliospheric plasma sheets as small-scale transients
    Crooker, NU
    Burton, ME
    Phillips, JL
    Smith, EJ
    Balogh, A
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1996, 101 (A2) : 2467 - 2474
  • [6] SMALL-SCALE MAGNETIC DISTURBANCES - WAVES OR SMALL-SCALE FIELD-ALIGNED CURRENTS
    NENOVSKI, P
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1991, 44 (10): : 47 - 50
  • [7] NATURE OF SMALL-SCALE SOLAR MAGNETIC-FIELD
    CHAPMAN, GA
    [J]. ASTROPHYSICAL JOURNAL, 1974, 191 (01): : 255 - 259
  • [8] Small-scale stochastic structure of the solar magnetic field
    B. A. Ioshpa
    V. N. Obridko
    V. E. Chertoprud
    [J]. Astronomy Letters, 2007, 33 : 844 - 847
  • [9] No feedback is possible in a small-scale turbulent magnetic field
    Zybin, K. P.
    Il'yn, A. S.
    Kopyev, A. V.
    Sirota, V. A.
    [J]. EPL, 2020, 132 (02)
  • [10] Small-scale stochastic structure of the solar magnetic field
    Ioshpa, B. A.
    Obridko, V. N.
    Chertoprud, V. E.
    [J]. ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2007, 33 (12): : 844 - 847