ON THE CUBIC L-FUNCTION

被引:3
|
作者
Proskurin, N. V. [1 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, St Petersburg Branch, St Petersburg 191023, Russia
关键词
Cubic L-function; distribution of zeros; THETA-SERIES; ANALOG;
D O I
10.1090/S1061-0022-2013-01242-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The cubic L-function is related to the cubic Kubota Patterson theta function via the Mellin transformation. The cubic L-function obeys a functional equation of the Riemann type (with two gamma factors), but admits no expansion in an Euler product. In the paper, the cubic L-function is studied, and the distribution problem for the real parts of its zeros is considered. Some conjectures based on calculations are stated.
引用
收藏
页码:353 / 370
页数:18
相关论文
共 50 条
  • [21] Integral Representation of the Standard L-Function
    Pitale, Ameya
    SIEGEL MODULAR FORMS: A CLASSICAL AND REPRESENTATION-THEORETIC APPROACH, 2019, 2240 : 83 - 91
  • [22] L-FUNCTION OF QUADRATIC-FORMS
    KENKU, MA
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1975, 276 : 36 - 43
  • [23] ON THE L-FUNCTION OF MULTIPLICATIVE CHARACTER SUMS
    Dollarhide, John
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (03) : 1637 - 1668
  • [24] The adjoint L-function of GL(4)
    Bump, D
    Ginzburg, D
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 505 : 119 - 172
  • [25] ON THE STANDARD L-FUNCTION FOR G(2)
    GINZBURG, D
    DUKE MATHEMATICAL JOURNAL, 1993, 69 (02) : 315 - 333
  • [26] Ising Model and L-Function [Erratum]
    Yu. M. Zinoviev
    Theoretical and Mathematical Physics, 2001, 128 : 1107 - 1107
  • [27] Some identities involving the dirichlet L-function
    Xu, Zhefeng
    Zhang, Wenpeng
    ACTA ARITHMETICA, 2007, 130 (02) : 157 - 166
  • [28] The shifted convolution L-function for Maass forms
    Goldfeld, Dorian
    Hinkle, Gerhardt
    Hoffstein, Jeffrey
    RESEARCH IN NUMBER THEORY, 2024, 10 (04)
  • [29] ON THE KTH POWER MEAN OF DIRICHLET L-FUNCTION
    ZHANG, WP
    CHINESE SCIENCE BULLETIN, 1990, 35 (13): : 1140 - 1141
  • [30] On the local Bump–Friedberg L-function II
    Nadir Matringe
    manuscripta mathematica, 2017, 152 : 223 - 240