SpliceGrapher: detecting patterns of alternative splicing from RNA-Seq data in the context of gene models and EST data

被引:96
|
作者
Rogers, Mark F. [1 ]
Thomas, Julie [2 ,3 ]
Reddy, Anireddy S. N. [2 ,3 ]
Ben-Hur, Asa [1 ,4 ]
机构
[1] Colorado State Univ, Dept Comp Sci, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA
[3] Colorado State Univ, Program Mol Plant Biol, Ft Collins, CO 80523 USA
[4] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
来源
GENOME BIOLOGY | 2012年 / 13卷 / 01期
基金
美国国家科学基金会;
关键词
GENOME-WIDE ANALYSIS; MESSENGER-RNA; TRANSCRIPTOME; ALIGNMENT; COMPLEXITY; ISOFORMS; REVEALS; PROGRAM; TOOL;
D O I
10.1186/gb-2012-13-1-r4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We propose a method for predicting splice graphs that enhances curated gene models using evidence from RNA-Seq and EST alignments. Results obtained using RNA-Seq experiments in Arabidopsis thaliana show that predictions made by our SpliceGrapher method are more consistent with current gene models than predictions made by TAU and Cufflinks. Furthermore, analysis of plant and human data indicates that the machine learning approach used by SpliceGrapher is useful for discriminating between real and spurious splice sites, and can improve the reliability of detection of alternative splicing. SpliceGrapher is available for download at http://SpliceGrapher.sf.net.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] KISSPLICE: de-novo calling alternative splicing events from RNA-seq data
    Sacomoto, Gustavo A. T.
    Kielbassa, Janice
    Chikhi, Rayan
    Uricaru, Raluca
    Antoniou, Pavlos
    Sagot, Marie-France
    Peterlongo, Pierre
    Lacroix, Vincent
    BMC BIOINFORMATICS, 2012, 13
  • [22] Alt Event Finder: a tool for extracting alternative splicing events from RNA-seq data
    Zhou, Ao
    Breese, Marcus R.
    Hao, Yangyang
    Edenberg, Howard J.
    Li, Lang
    Skaar, Todd C.
    Liu, Yunlong
    BMC GENOMICS, 2012, 13
  • [23] One pipeline to predict them all? On the prediction of alternative splicing from RNA-Seq data
    Olofsson, Didrik
    Preussner, Marco
    Kowar, Alexander
    Heyd, Florian
    Neumann, Alexander
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2023, 653 : 31 - 37
  • [24] MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data
    Shen, Shihao
    Park, Juw Won
    Huang, Jian
    Dittmar, Kimberly A.
    Lu, Zhi-xiang
    Zhou, Qing
    Carstens, Russ P.
    Xing, Yi
    NUCLEIC ACIDS RESEARCH, 2012, 40 (08)
  • [25] A benchmarking of pipelines for detecting ncRNAs from RNA-Seq data
    Di Bella, Sebastiano
    La Ferlita, Alessandro
    Carapezza, Giovanni
    Alaimo, Salvatore
    Isacchi, Antonella
    Ferro, Alfredo
    Pulvirenti, Alfredo
    Bosotti, Roberta
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (06) : 1987 - 1998
  • [26] Detecting differential usage of exons from RNA-seq data
    Anders, Simon
    Reyes, Alejandro
    Huber, Wolfgang
    GENOME RESEARCH, 2012, 22 (10) : 2008 - 2017
  • [27] Identification of alternative splicing regulatory patterns and characteristic splicing factors in heart failure using RNA-seq data and machine learning
    Li, Jia
    Tu, Dingyuan
    Li, Songhua
    Guo, Zhifu
    Song, Xiaowei
    HELIYON, 2024, 10 (15)
  • [28] rSeqNP: a non-parametric approach for detecting differential expression and splicing from RNA-Seq data
    Shi, Yang
    Chinnaiyan, Arul M.
    Jiang, Hui
    BIOINFORMATICS, 2015, 31 (13) : 2222 - 2224
  • [29] Quantification of co-transcriptional splicing from RNA-Seq data
    Herzel, Lydia
    Neugebauer, Karla M.
    METHODS, 2015, 85 : 36 - 43
  • [30] ARH-seq: identification of differential splicing in RNA-seq data
    Rasche, Axel
    Lienhard, Matthias
    Yaspo, Marie-Laure
    Lehrach, Hans
    Herwig, Ralf
    NUCLEIC ACIDS RESEARCH, 2014, 42 (14) : e110