A positivity-preserving numerical scheme for option pricing model with transaction costs under jump-diffusion process

被引:5
|
作者
Zhou, Shengwu [1 ]
Han, Lei [1 ]
Li, Wei [2 ]
Zhang, Yan [1 ]
Han, Miao [1 ]
机构
[1] China Univ Min & Technol, Coll Sci, Xuzhou 221116, Jiangsu, Peoples R China
[2] Guolian Futures Co Ltd, Dept Financial Engn, Wuxi 214121, Jiangsu, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2015年 / 34卷 / 03期
关键词
Option pricing; Jump-diffusion process; Nonstandard scheme; Transaction costs; AMERICAN OPTIONS; VALUATION;
D O I
10.1007/s40314-014-0156-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Option pricing model and numerical method with transaction costs under jump-diffusion process of Merton is studied in this paper. Partial integro-differential equation satisfied by the option value is derived by delta-hedge method, which is a nonlinear Black-Scholes equation with an infinite integral, and it is difficult to obtain the analytic solution. Based on a nonstandard approximation of the second partial derivative, a double discretization strategy is introduced for the unbounded part of the spatial domain and a positivity-preserving numerical scheme is developed. The scheme is not only unconditionally stable and positive, but also allows us to solve the discrete equation explicitly, and after modifying it becomes consistent. The numerical results for European call option and digital call option are compared to the standard finite difference scheme. It turns out that the proposed scheme is efficient and reliable.
引用
收藏
页码:881 / 900
页数:20
相关论文
共 50 条
  • [31] Pricing European Option under Fractional Jump-diffusion Ornstein-Uhlenbeck Model
    Xue Hong
    Sun Yudong
    RECENT ADVANCE IN STATISTICS APPLICATION AND RELATED AREAS, VOLS I AND II, 2009, : 164 - 169
  • [32] Option pricing under jump diffusion model
    Li, Qian
    Wang, Li
    STATISTICS & PROBABILITY LETTERS, 2024, 211
  • [33] Pricing Exotic Option Under Jump-Diffusion Models by the Quadrature Method
    Zhang, Jin-Yu
    Wu, Wen-Bo
    Li, Yong
    Lou, Zhu-Sheng
    COMPUTATIONAL ECONOMICS, 2021, 58 (03) : 867 - 884
  • [34] Pricing Exotic Option Under Jump-Diffusion Models by the Quadrature Method
    Jin-Yu Zhang
    Wen-Bo Wu
    Yong Li
    Zhu-Sheng Lou
    Computational Economics, 2021, 58 : 867 - 884
  • [35] Option pricing under regime-switching jump-diffusion models
    Costabile, Massimo
    Leccadito, Arturo
    Massabo, Ivar
    Russo, Emilio
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 256 : 152 - 167
  • [36] A combined compact difference scheme for option pricing in the exponential jump-diffusion models
    Akbari, Rahman
    Mokhtari, Reza
    Jahandideh, Mohammad Taghi
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [37] A combined compact difference scheme for option pricing in the exponential jump-diffusion models
    Rahman Akbari
    Reza Mokhtari
    Mohammad Taghi Jahandideh
    Advances in Difference Equations, 2019
  • [38] Pricing Arithmetic Asian Put Option with Early Exercise Boundary under Jump-Diffusion Process
    Laham, M. F.
    Ibrahim, S. N. I.
    Kilicman, A.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (01): : 1 - 15
  • [39] A Fuzzy Jump-Diffusion Option Pricing Model Based on the Merton Formula
    Mandal, Satrajit
    Bhattacharya, Sujoy
    ASIA-PACIFIC FINANCIAL MARKETS, 2024,
  • [40] Exact and approximated option pricing in a stochastic volatility jump-diffusion model
    D'Ippoliti, Fernanda
    Moretto, Enrico
    Pasquali, Sara
    Trivellato, Barbara
    MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, 2010, : 133 - +