Information Filtering via a Scaling-Based Function

被引:17
|
作者
Qiu, Tian [1 ]
Zhang, Zi-Ke [2 ,3 ,4 ]
Chen, Guang [1 ]
机构
[1] Nanchang Hangkong Univ, Sch Informat Engn, Nanchang, Peoples R China
[2] Hangzhou Normal Univ, Inst Informat Econ, Hangzhou, Zhejiang, Peoples R China
[3] Univ Elect Sci & Technol China, Web Sci Ctr, Chengdu 610054, Peoples R China
[4] Beijing Computat Sci Res Ctr, Beijing, Peoples R China
来源
PLOS ONE | 2013年 / 8卷 / 05期
基金
中国国家自然科学基金;
关键词
OF-THE-ART; RECOMMENDER SYSTEMS; PREDICTION;
D O I
10.1371/journal.pone.0063531
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Finding a universal description of the algorithm optimization is one of the key challenges in personalized recommendation. In this article, for the first time, we introduce a scaling-based algorithm (SCL) independent of recommendation list length based on a hybrid algorithm of heat conduction and mass diffusion, by finding out the scaling function for the tunable parameter and object average degree. The optimal value of the tunable parameter can be abstracted from the scaling function, which is heterogeneous for the individual object. Experimental results obtained from three real datasets, Netflix, MovieLens and RYM, show that the SCL is highly accurate in recommendation. More importantly, compared with a number of excellent algorithms, including the mass diffusion method, the original hybrid method, and even an improved version of the hybrid method, the SCL algorithm remarkably promotes the personalized recommendation in three other aspects: solving the accuracy-diversity dilemma, presenting a high novelty, and solving the key challenge of cold start problem.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Efficient Non-Conservative Realization of Dynamic Scaling-Based Output-Feedback Controllers via a Matrix Pencil Approach
    Krishnamurthy, P.
    Khorrami, F.
    IFAC PAPERSONLINE, 2020, 53 (02): : 4875 - 4880
  • [32] Dynamic-Covariance-Scaling-Based Robust Sigma-Point Information Filtering
    Li, Shoupeng
    Cui, Naigang
    Mu, Rongjun
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2021, 44 (09) : 1677 - 1684
  • [33] Entropy Scaling-Based Correlation for Estimating the Self-Diffusion Coefficients of Pure Fluids
    Dehlouz, Aghilas
    Jaubert, Jean-Noel
    Galliero, Guillaume
    Bonnissel, Marc
    Privat, Romain
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (37) : 14033 - 14050
  • [34] Multidimensional scaling-based passive emitter localisation from range-difference measurements
    Wei, H. -W.
    Wan, Q.
    Chen, Z. -X.
    Ye, S. -F.
    IET SIGNAL PROCESSING, 2008, 2 (04) : 415 - 423
  • [35] Hardware Trojan attacks on voltage scaling-based side-channel attack countermeasure
    Yu, Weize
    IET CIRCUITS DEVICES & SYSTEMS, 2019, 13 (03) : 321 - 326
  • [36] Extended Chirp Scaling-Baseband Azimuth Scaling-Based Azimuth-Range Decouple L1 Regularization for TOPS SAR Imaging via CAMP
    Bi, Hui
    Zhang, Bingchen
    Zhu, Xiao Xiang
    Jiang, Chenglong
    Hong, Wen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (07): : 3748 - 3763
  • [37] Dynamic Scaling-Based Noncertainty-Equivalent Adaptive Spacecraft Attitude Tracking Control
    Wen, Haowei
    Yue, Xiaokui
    Yuan, Jianping
    JOURNAL OF AEROSPACE ENGINEERING, 2018, 31 (02)
  • [38] A Metric Multidimensional Scaling-Based Nonlinear Manifold Learning Approach for Unsupervised Data Reduction
    M. Brucher
    Ch. Heinrich
    F. Heitz
    J.-P. Armspach
    EURASIP Journal on Advances in Signal Processing, 2008
  • [39] A metric multidimensional scaling-based nonlinear manifold learning approach for unsupervised data reduction
    Brucher, M.
    Heinrich, Ch.
    Heitz, F.
    Armspach, J. -P.
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2008, 2008 (1)
  • [40] Improving neighborhood based Collaborative Filtering via integrated folksonomy information
    Luo, Xin
    Ouyang, Yuanxin
    Xiong, Zhang
    PATTERN RECOGNITION LETTERS, 2012, 33 (03) : 263 - 270