Dysregulation of REST-regulated coding and non-coding RNAs in a cellular model of Huntington's disease

被引:68
|
作者
Soldati, Chiara [3 ]
Bithell, Angela [1 ]
Johnston, Caroline
Wong, Kee-Yew [2 ]
Stanton, Lawrence W. [2 ]
Buckley, Noel J. [1 ]
机构
[1] Kings Coll London, Dept Neurosci, Ctr Cellular Basis Behav, Inst Psychiat,James Black Ctr, London SE5 9NU, England
[2] Genome Inst Singapore, Singapore, Singapore
[3] Univ Roma La Sapienza, Dept Biol & Biotechnol Charles Darwin, Rome, Italy
基金
英国惠康基金;
关键词
Huntingtin; Huntington's disease; microRNA; REST; synaptic transmission; transcriptional dysregulation; NEUROTROPHIC FACTOR; MUTANT HUNTINGTIN; GENE-EXPRESSION; COMPLEXIN-II; TRANSCRIPTION; PROTEIN; ABNORMALITIES; DEGENERATION; DYSFUNCTION; INTERACTS;
D O I
10.1111/jnc.12090
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Huntingtin (Htt) protein interacts with many transcriptional regulators, with widespread disruption to the transcriptome in Huntington's disease (HD) brought about by altered interactions with the mutant Htt (muHtt) protein. Repressor Element-1 Silencing Transcription Factor (REST) is a repressor whose association with Htt in the cytoplasm is disrupted in HD, leading to increased nuclear REST and concomitant repression of several neuronal-specific genes, including brain-derived neurotrophic factor (Bdnf). Here, we explored a wide set of HD dysregulated genes to identify direct REST targets whose expression is altered in a cellular model of HD but that can be rescued by knock-down of REST activity. We found many direct REST target genes encoding proteins important for nervous system development, including a cohort involved in synaptic transmission, at least two of which can be rescued at the protein level by REST knock-down. We also identified several microRNAs (miRNAs) whose aberrant repression is directly mediated by REST, including miR-137, which has not previously been shown to be a direct REST target in mouse. These data provide evidence of the contribution of inappropriate REST-mediated transcriptional repression to the widespread changes in coding and non-coding gene expression in a cellular model of HD that may affect normal neuronal function and survival.
引用
收藏
页码:418 / 430
页数:13
相关论文
共 50 条
  • [41] The emerging role of long non-coding RNAs, microRNAs, and an accelerated epigenetic age in Huntington's disease
    Ghafouri-Fard, Soudeh
    Khoshbakht, Tayyebeh
    Hussen, Bashdar Mahmud
    Taheri, Mohammad
    Ebrahimzadeh, Kaveh
    Noroozi, Rezvan
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [42] Genetic variation in the non-coding genome: Involvement of micro-RNAs and long non-coding RNAs in disease
    Hrdlickova, Barbara
    de Almeida, Rodrigo Coutinho
    Borek, Zuzanna
    Withoff, Sebo
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2014, 1842 (10): : 1910 - 1922
  • [43] Long Non-Coding RNAs in Kidney Disease
    Ignarski, Michael
    Islam, Rashidul
    Mueller, Roman-Ulrich
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (13):
  • [44] Long non-coding RNAs and human disease
    Harries, Lorna W.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2012, 40 : 902 - 906
  • [45] Non-coding RNAs and Coronary Artery Disease
    Cardona-Monzonis, Alejandro
    Luis Garcia-Gimenez, Jose
    Mena-Molla, Salvador
    Pareja-Galeano, Helios
    de la Guia-Galipienso, Fernando
    Lippi, Giuseppe
    Pallardo, Federico V.
    Sanchis-Gomar, Fabian
    NON-CODING RNAS IN CARDIOVASCULAR DISEASES, 2020, 1229 : 273 - 285
  • [46] Non-Coding RNAs in Health and Disease: Editorial
    Catanzaro, Giuseppina
    BIOMEDICINES, 2023, 11 (01)
  • [47] Crucial role of non-coding RNAs in disease
    Peng, Yong
    Calin, George A.
    CANCER LETTERS, 2018, 420 : 127 - 128
  • [48] Coding and non-coding RNAs & Mammalian development
    Sampath, Karuna
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2015, 47-48 : 1 - 2
  • [49] Apoptosis and heart failure: The role of non-coding RNAs and exosomal non-coding RNAs
    Li, Ketao
    Ma, Liping
    Lu, Zhiwei
    Yan, Laixing
    Chen, Wan
    Wang, Bing
    Xu, Huiju
    Asemi, Zatollah
    PATHOLOGY RESEARCH AND PRACTICE, 2023, 248
  • [50] Non-coding RNAs and exosomal non-coding RNAs in lung cancer: insights into their functions
    Lv, Xiaolong
    Yang, Lei
    Xie, Yunbo
    Momeni, Mohammad Reza
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2024, 12