Comparing Block Ensembles for Data Streams with Concept Drift

被引:0
|
作者
Deckert, Magdalena [1 ]
Stefanowski, Jerzy [1 ]
机构
[1] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
关键词
ENVIRONMENTS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Three block based ensembles, AWE, BWE and ACE, are considered in the perspective of learning from data streams with concept drift. AWE updates the ensemble after processing each successive block of incoming examples, while the other ensembles are additionally extended by different drift detectors. Experiments show that these extensions improve classification accuracy, in particular for sudden changes occurring within the block, as well as reduce computational costs.
引用
收藏
页码:69 / 78
页数:10
相关论文
共 50 条
  • [1] Dynamically Adjusting Diversity in Ensembles for the Classification of Data Streams with Concept Drift
    Hidalgo, Juan I. G.
    Santos, Silas G. T. C.
    Barros, Roberto S. M.
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2022, 16 (02)
  • [2] An online ensembles approach for handling concept drift in data streams: diversified online ensembles detection
    Sidhu, Parneeta
    Bhatia, M. P. S.
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2015, 6 (06) : 883 - 909
  • [3] An online ensembles approach for handling concept drift in data streams: diversified online ensembles detection
    Parneeta Sidhu
    M. P. S. Bhatia
    [J]. International Journal of Machine Learning and Cybernetics, 2015, 6 : 883 - 909
  • [4] Classification of concept drift data streams
    Padmalatha, E.
    Reddy, C. R. K.
    Rani, B. Padmaja
    [J]. 2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND APPLICATIONS (ICISA), 2014,
  • [5] ENSEMBLE ALGORITHM FOR DATA STREAMS WITH CONCEPT DRIFT
    Tase, R. O. R.
    Cabrera, A. V.
    Naranjo, D. L. O.
    Diaz, A. A. O.
    Blanco, I. F.
    [J]. HOLOS, 2016, 32 (02) : 24 - 36
  • [6] On Fuzzy Clustering of Data Streams with Concept Drift
    Jaworski, Maciej
    Duda, Piotr
    Pietruczuk, Lena
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT II, 2012, 7268 : 82 - 91
  • [7] Combining block-based and online methods in learning ensembles from concept drifting data streams
    Brzezinski, Dariusz
    Stefanowski, Jerzy
    [J]. INFORMATION SCIENCES, 2014, 265 : 50 - 67
  • [8] Handling Concept Drift in Data Streams by Using Drift Detection Methods
    Patil, Malini M.
    [J]. DATA MANAGEMENT, ANALYTICS AND INNOVATION, ICDMAI 2018, VOL 2, 2019, 839 : 155 - 166
  • [9] Accurate detecting concept drift in evolving data streams
    Yan, Myuu Myuu Wai
    [J]. ICT EXPRESS, 2020, 6 (04): : 332 - 338
  • [10] An Active Learning Method for Data Streams with Concept Drift
    Park, Cheong Hee
    Kang, Youngsoon
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 746 - 752