On Fuzzy Clustering of Data Streams with Concept Drift

被引:0
|
作者
Jaworski, Maciej [1 ]
Duda, Piotr [1 ]
Pietruczuk, Lena [1 ]
机构
[1] Czestochowa Tech Univ, Dept Comp Engn, PL-42200 Czestochowa, Poland
关键词
IDENTIFICATION; ALGORITHMS; SYSTEMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the paper the clustering algorithms based on fuzzy set theory are considered. Modifications of the Fuzzy C-Means and the Possibilistic C-Means algorithms are presented, which adjust them to deal with data streams. Since data stream is of infinite size, it has to be partitioned into chunks. Simulations show that this partitioning procedure does not affect the quality of clustering results significantly. Moreover, properly chosen weights can be assigned to each data element. This modification allows the presented algorithms to handle concept drift during simulations.
引用
收藏
页码:82 / 91
页数:10
相关论文
共 50 条
  • [1] Predicting concept drift in data streams using metadata clustering
    Anderson, Robert
    Koh, Yun Sing
    Dobbie, Gillian
    [J]. 2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [2] Online Clustering for Novelty Detection and Concept Drift in Data Streams
    Garcia, Kemilly Dearo
    Poel, Mannes
    Kok, Joost N.
    de Carvalho, Andre C. P. L. F.
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE, PT II, 2019, 11805 : 448 - 459
  • [3] Anytime clustering of data streams while handling noise and concept drift
    Challa, Jagat Sesh
    Goyal, Poonam
    Kokandakar, Ajinkya
    Mantri, Dhananjay
    Verma, Pranet
    Balasubramaniam, Sundar
    Goyal, Navneet
    [J]. JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2022, 34 (03) : 399 - 429
  • [4] Incremental entropy-based clustering on categorical data streams with concept drift
    Li, Yanhong
    Li, Deyu
    Wang, Suge
    Zhai, Yanhui
    [J]. KNOWLEDGE-BASED SYSTEMS, 2014, 59 : 33 - 47
  • [5] Classification of concept drift data streams
    Padmalatha, E.
    Reddy, C. R. K.
    Rani, B. Padmaja
    [J]. 2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND APPLICATIONS (ICISA), 2014,
  • [6] A dynamic similarity weighted evolving fuzzy system for concept drift of data streams
    Li, Haoli
    Zhao, Tao
    [J]. INFORMATION SCIENCES, 2024, 659
  • [7] ENSEMBLE ALGORITHM FOR DATA STREAMS WITH CONCEPT DRIFT
    Tase, R. O. R.
    Cabrera, A. V.
    Naranjo, D. L. O.
    Diaz, A. A. O.
    Blanco, I. F.
    [J]. HOLOS, 2016, 32 (02) : 24 - 36
  • [8] Handling Concept Drift in Data Streams by Using Drift Detection Methods
    Patil, Malini M.
    [J]. DATA MANAGEMENT, ANALYTICS AND INNOVATION, ICDMAI 2018, VOL 2, 2019, 839 : 155 - 166
  • [9] Accurate detecting concept drift in evolving data streams
    Yan, Myuu Myuu Wai
    [J]. ICT EXPRESS, 2020, 6 (04): : 332 - 338
  • [10] Comparing Block Ensembles for Data Streams with Concept Drift
    Deckert, Magdalena
    Stefanowski, Jerzy
    [J]. NEW TRENDS IN DATABASES AND INFORMATION SYSTEMS, 2013, 185 : 69 - 78