Energy-efficient LDPC codec design using cost-effective early termination scheme

被引:3
|
作者
Lin, Cheng-Hung [1 ]
Wu, Yuan-Syun [1 ]
Song, Chen-Pei [1 ]
机构
[1] Yuan Ze Univ, Dept Elect Engn, Jhongli 32003, Taiwan
来源
IET COMPUTERS AND DIGITAL TECHNIQUES | 2019年 / 13卷 / 02期
关键词
codecs; decoding; parity check codes; CMOS integrated circuits; cyclic codes; iterative decoding; energy-efficient LDPC codec design; cost-effective early termination scheme; energy-efficient codec design; decoding iterations; ET scheme; QC-LDPC codec; decoding energy efficiency; energy reduction; quasicyclic-low-density parity-check code; TSMC CMOS technology; QC-LDPC code; size; 90; 0; nm; frequency; 278; MHz; 9; 86; mm; bit rate 4; 3; Gbit; s; 4; DECODER; WIMAX;
D O I
10.1049/iet-cdt.2018.5074
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Here, the authors propose an energy-efficient codec design using a rate-0.91 systematic quasi-cyclic-low-density parity-check (QC-LDPC) code. A cost-effective early termination (ET) scheme is presented for efficiently terminating the decoding iterations and maintaining desirable correcting performance. Compared with no ET scheme, the cost-effective ET scheme achieves 54.6% energy reduction with 1.7% area overhead. Finally, the proposed QC-LDPC codec employing the cost-effective ET scheme is implemented in a prototyping chip of 9.86 mm(2) core area using the TSMC 90 nm CMOS technology. Compared with the other decoder chips, the prototyping codec operating at 278 MHz achieves the best decoding energy efficiency of 156 pJ/bit with a high decoding throughput of 4.3 Gbps. The prototyping codec also achieves a high encoding throughput of 4.4 Gbps.
引用
收藏
页码:118 / 125
页数:8
相关论文
共 50 条
  • [1] Cost-effective, energy-efficient residence
    Griffiths, D
    Zoeller, W
    [J]. ASHRAE JOURNAL, 2001, 43 (04) : 56 - 58
  • [2] Optimal design of energy-efficient and cost-effective wireless body area networks
    Elias, Jocelyne
    [J]. AD HOC NETWORKS, 2014, 13 : 560 - 574
  • [3] A DECISION SUPPORT FRAMEWORK FOR COST-EFFECTIVE AND ENERGY-EFFICIENT SHIPPING
    Bui, Khanh Q.
    Perera, Lokukaluge P.
    [J]. PROCEEDINGS OF THE ASME 39TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2020, VOL 6A, 2020,
  • [4] COST-EFFECTIVE, ENERGY-EFFICIENT ALUMINUM METAL CONTACT REFRACTORIES
    WUNCH, JW
    [J]. AMERICAN CERAMIC SOCIETY BULLETIN, 1982, 61 (09): : 945 - 945
  • [5] Energy-Efficient and Cost-Effective Approaches through Energy Modeling for Hotel Building
    Agharid, Alya Penta
    Permana, Indra
    Singh, Nitesh
    Wang, Fujen
    Gustiyana, Susan
    [J]. Energy Engineering: Journal of the Association of Energy Engineering, 2024, 121 (12): : 3549 - 3571
  • [6] High-Throughput QC-LDPC Decoder with Cost-Effective Early Termination Scheme for Non-Volatile Memory Systems
    Lin, Yu-Min
    Chen, Yu-Hao
    Chung, Ming-Han
    Wu, An-Yeu
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2014, : 2732 - 2735
  • [7] ENERGY-EFFICIENT COST-EFFECTIVE INVERTER CONFIGURATION FOR RESIDENTIAL PHOTOVOLTAIC SYSTEMS
    El Bassiouny, O. A.
    Dhople, S., V
    Davoudi, A.
    Chapman, P. L.
    [J]. 35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010,
  • [8] Energy-efficient and cost-effective ammonia electrolysis for converting ammonia to green hydrogen
    Zhang, Kui
    Han, Yangkai
    Zhao, Yun
    Wei, Tao
    Fu, Jinchen
    Ren, Zhiwei
    Xu, Xiaozhi
    Zhou, Li
    Shao, Zhigang
    [J]. CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (09):
  • [9] Embedded STT-MRAM for Energy-efficient and Cost-effective Mobile Systems
    Kang, Seung H.
    [J]. 2014 SYMPOSIUM ON VLSI TECHNOLOGY (VLSI-TECHNOLOGY): DIGEST OF TECHNICAL PAPERS, 2014,
  • [10] Early Termination Based Training Acceleration for an Energy-Efficient SNN Processor Design
    Choi, Sunghyun
    Lew, Dongwoo
    Park, Jongsun
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2022, 16 (03) : 442 - 455