Model-based co-clustering for functional data

被引:30
|
作者
Ben Slimen, Yosra [1 ,2 ]
Allio, Sylvain [1 ]
Jacques, Julien [2 ]
机构
[1] Orange Labs, Belfort, France
[2] Univ Lyon, Univ Lyon 2, ERIC EA3083, Lyon, France
关键词
Co-clustering; Functional data; SEM-Gibbs algorithm; Latent block model; ICL-BIC criterion; Mobile network; Key performance indicators; APPROXIMATION; DENSITY;
D O I
10.1016/j.neucom.2018.02.055
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to provide a simplified representation of key performance indicators for an easier analysis by mobile network maintainers, a model-based co-clustering algorithm for functional data is proposed. Co-clustering aims to identify block patterns in a data set from a simultaneous clustering of rows and columns. The algorithm relies on the latent block model in which each curve is identified by its functional principal components that are modeled by a multivariate Gaussian distribution whose parameters are block-specific. These latter are estimated by a stochastic EM algorithm embedding a Gibbs sampling. In order to select the numbers of row-and column-clusters, an ICL-BIC criterion is introduced. In addition to be the first co-clustering algorithm for functional data, the advantage of the proposed model is its ability to extract the hidden double structure induced by the data and its ability to deal with missing values. The model has proven its efficiency on simulated data and on a real data application that helps to optimize the topology of 4G mobile networks. (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:97 / 108
页数:12
相关论文
共 50 条
  • [21] Co-clustering from Tensor Data
    Boutalbi, Rafika
    Labiod, Lazhar
    Nadif, Mohamed
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT I, 2019, 11439 : 370 - 383
  • [22] Sleeved co-clustering of lagged data
    Eran Shaham
    David Sarne
    Boaz Ben-Moshe
    Knowledge and Information Systems, 2012, 31 : 251 - 279
  • [23] Co-clustering of fuzzy lagged data
    Eran Shaham
    David Sarne
    Boaz Ben-Moshe
    Knowledge and Information Systems, 2015, 44 : 217 - 252
  • [24] Co-clustering of fuzzy lagged data
    Shaham, Eran
    Sarne, David
    Ben-Moshe, Boaz
    KNOWLEDGE AND INFORMATION SYSTEMS, 2015, 44 (01) : 217 - 252
  • [25] The functional latent block model for the co-clustering of electricity consumption curves
    Bouveyron, Charles
    Bozzi, Laurent
    Jacques, Julien
    Jollois, Francois-Xavier
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2018, 67 (04) : 897 - 915
  • [26] Co-clustering based classification of multi-view data
    Syed Fawad Hussain
    Mohsin Khan
    Imran Siddiqi
    Applied Intelligence, 2022, 52 : 14756 - 14772
  • [27] Co-clustering based classification of multi-view data
    Hussain, Syed Fawad
    Khan, Mohsin
    Siddiqi, Imran
    APPLIED INTELLIGENCE, 2022, 52 (13) : 14756 - 14772
  • [28] A hash-based co-clustering algorithm for categorical data
    de Franca, Fabricio Olivetti
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 64 : 24 - 35
  • [29] Gaussian Topographic Co-clustering Model
    Priam, Rodolphe
    Nadif, Mohamed
    Govaert, Gerard
    ADVANCES IN INTELLIGENT DATA ANALYSIS XII, 2013, 8207 : 345 - 356
  • [30] Model-based clustering of functional data via mixtures of t distributions
    Anton, Cristina
    Smith, Iain
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024, 18 (03) : 563 - 595