Cloaking of 2D particle geometries in a surface medium

被引:0
|
作者
Alexopoulos, A. [1 ]
Yau, K. S. B. [1 ]
机构
[1] DSTO, Elect Warfare & Radar Div, Edinburgh 5111, Australia
关键词
Cloaking; Two-dimensional inclusions; Electromagnetic scattering; NEGATIVE REFRACTION; TRANSPARENCY; SCATTERING; FIELD;
D O I
10.1016/j.physleta.2013.02.037
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We theoretically examine the cloaking condition for two-dimensional particles with varying geometry embedded inside a surface medium. General solutions are obtained for multi-layer particle configurations with either all positive or partially negative constitutive parameters respectively. Cloaking of particle geometries that are large relative to the incident wavelength is demonstrated. Theoretical predictions are compared to full-wave numerical simulations for arrays of particles consisting of different geometries. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1143 / 1149
页数:7
相关论文
共 50 条
  • [31] Stick-Slip and the Transition to Steady Sliding in a 2D Granular Medium and a Fixed Particle Lattice
    Krim, J.
    Yu, Peidong
    Behringer, R. P.
    PURE AND APPLIED GEOPHYSICS, 2011, 168 (12) : 2259 - 2275
  • [32] Geometric reasoning for the freehand-drawn delineation of 2D geometries
    Meidow, Jochen
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 201 : 67 - 77
  • [33] Topological wave equation eigenmodes in continuous 2D periodic geometries
    Dias, R. G.
    Madail, L.
    Lykholat, A.
    Andrade, R.
    Marques, A. M.
    EUROPEAN JOURNAL OF PHYSICS, 2024, 45 (04)
  • [34] On the mathematical solution of 2D Navier Stokes equations for different geometries
    Abughalia, M. A. Mehemed
    Advances in Fluid Mechanics VI, 2006, 52 : 39 - 47
  • [35] Boundary treatment for 2D elliptic mesh generation in complex geometries
    Zhang, Yaoxin
    Jia, Yafei
    Wang, Sam S. Y.
    Chan, H. C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (16) : 7977 - 7997
  • [36] STATIC PRESSURE DISTRIBUTIONS OVER 2D MAST SAIL GEOMETRIES
    WILKINSON, S
    MARINE TECHNOLOGY AND SNAME NEWS, 1989, 26 (04): : 333 - 337
  • [37] Numerical simulation of cavitating flow in 2D and 3D inducer geometries
    Coutier-Delgosha, O
    Fortes-Patella, R
    Reboud, JL
    Hakimi, N
    Hirsch, C
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2005, 48 (02) : 135 - 167
  • [38] A Comparative Study of Several Array Geometries for 2D DOA Estimation
    Kiani, Sharareh
    Pezeshk, Amir Mansour
    SECOND INTERNATIONAL SYMPOSIUM ON COMPUTER VISION AND THE INTERNET (VISIONNET'15), 2015, 58 : 18 - 25
  • [39] Surface thermomigration of 2D voids
    Curiotto, Stefano
    Combe, Nicolas
    Muller, Pierre
    El Barraj, Ali
    Abu Dahech, Nayef
    Cheynis, Fabien
    Pierre-Louis, Olivier
    Leroy, Frederic
    APPLIED PHYSICS LETTERS, 2024, 125 (12)
  • [40] A Sampling Theorem for a 2D Surface
    Lee, Deokwoo
    Krim, Hamid
    SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, 2012, 6667 : 556 - 567