Multiscale methods for elliptic homogenization problems

被引:10
|
作者
Chen, ZX [1 ]
机构
[1] So Methodist Univ, Dept Math, Ctr Comp Sci, Dallas, TX 75275 USA
关键词
multiscale finite element; heterogeneous multiscale method; mixed finite element; heterogeneous porous medium; convergence; stability; error estimates;
D O I
10.1002/num.20099
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study two families of multiscale methods for numerically solving elliptic homogenization problems. The recently developed multiscale finite element method (Hou and Wu, J Comp Phys 134 (1997), 169-189) captures the effect of microscales on macroscales through modification of finite element basis functions. Here we reformulate this method that captures the same effect through modification of bilinear forms in the finite element formulation. This new formulation is a general approach that can handle a large variety of differential problems and numerical methods. It can be easily extended to nonlinear problems and mixed finite element methods, for example. The latter extension is carried out in this article. The recently introduced heterogeneous multiscale method (Engquist and Engquist, Comm Math Sci 1 (2003), 87-132) is designed for efficient numerical solution of problems with multiscales and multiphysics. In the second part of this article, we study this method in mixed form (we call it the mixed heterogeneous multiscale method). We present a detailed analysis for stability and convergence of this new method. Estimates are obtained for the error between the homogenized and numerical multiscale solutions. Strategies for retrieving the microstructural information from the numerical solution are provided and analyzed. Relationship between the multiscale finite element and heterogeneous multiscale methods is discussed. (c) 2005 Wiley Periodicals, Inc.
引用
下载
收藏
页码:317 / 360
页数:44
相关论文
共 50 条
  • [31] An isogeometric analysis for elliptic homogenization problems
    Nguyen-Xuan, H.
    Hoang, T.
    Nguyen, V. P.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (09) : 1722 - 1741
  • [32] A NEURAL NETWORK APPROACH FOR HOMOGENIZATION OF MULTISCALE PROBLEMS
    Han, Jihun
    Lee, Yoonsang
    MULTISCALE MODELING & SIMULATION, 2023, 21 (02): : 716 - 734
  • [33] On multiscale homogenization problems in boundary layer theory
    Amirat, Youcef
    Chechkin, Gregory A.
    Romanov, Maxim
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (03): : 475 - 502
  • [34] On multiscale homogenization problems in boundary layer theory
    Youcef Amirat
    Gregory A. Chechkin
    Maxim Romanov
    Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 475 - 502
  • [35] Multiscale convergence and reiterated homogenization of parabolic problems
    Holmbom A.
    Svanstedt N.
    Wellander N.
    Applications of Mathematics, 2005, 50 (2) : 131 - 151
  • [36] A sparse spectral method for homogenization multiscale problems
    Daubechies, Ingrid
    Runborg, Olof
    Zou, Jing
    MULTISCALE MODELING & SIMULATION, 2007, 6 (03): : 711 - 740
  • [37] ITERATED NUMERICAL HOMOGENIZATION FOR MULTISCALE ELLIPTIC EQUATIONS WITH MONOTONE NONLINEARITY
    Liu, Xinliang
    Chung, Eric
    Zhang, Lei
    MULTISCALE MODELING & SIMULATION, 2021, 19 (04): : 1601 - 1632
  • [38] Numerical method for elliptic multiscale problems
    Greff, I.
    Hackbusch, W.
    JOURNAL OF NUMERICAL MATHEMATICS, 2008, 16 (02) : 119 - 138
  • [39] ON SOME NONLINEAR ELLIPTIC PROBLEMS IN THE HOMOGENIZATION THEORY
    OLEINIK, OA
    IOSIFYAN, GA
    TEMAM, R
    DOKLADY AKADEMII NAUK, 1994, 338 (03) : 310 - 312
  • [40] Uniform bound and convergence for elliptic homogenization problems
    Yeh, Li-Ming
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) : 1803 - 1832