Characterization and Pseudo-Capacitance Performance of Porous Co3O4 Nanorods Synthesized by Thermal Decomposition

被引:2
|
作者
Zou, Ruyi [1 ,2 ]
Zhu, Lin [1 ]
Yan, Lijun [1 ]
Shao, Bo [1 ]
Zhang, Xiaoping [1 ]
Sun, Wei [1 ]
机构
[1] Hainan Normal Univ, Coll Chem & Chem Engn, Key Lab Funct Mat & Photoelectrochem Haikou, Key Lab Laser Technol & Optoelect Funct Mat Haina, Haikou 571158, Hainan, Peoples R China
[2] Shangrao Normal Univ, Sch Chem & Environm Sci, Jiangxi Prov Key Lab Polymer Preparat & Proc, Shangrao 334001, Peoples R China
来源
关键词
Cobalt oxide nanorods; Supercapacitor; Thermal decomposition; Pseudo-capacitance; ASSISTED SYNTHESIS; FACILE SYNTHESIS; NANOSTRUCTURES; NANOSHEETS; CONVERSION; ELECTRODE; HYBRID; SYSTEM; POWER; FOAM;
D O I
10.20964/2020.06.48
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Porous Co3O4 nanorods were synthesized by the thermolysis of organometallic cobalt oxalate precursor via ultrasonic assisted method. FT-IR, XRD, XPS, SEM, TEM and BET were applied to characterize the effect of thermal treatment temperature on the properties of porous Co3O4 nanorods. A threeelectrode system was used to perform cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge measurements to study the electrochemical behaviours of Co3O4 nanorods modified nickel foam electrodes. Compared with Co3O4 prepared by pyrolysis at various temperatures, Co3O4 nanorods obtained at 300 degrees C had the highest specific capacitance of 226.80 F.g(-1) at a current density of 1 A.g(-1) in the potential range of -0.4 to 0.6 V (vs. Hg/HgO). After performing 1000 cycles in 2 M KOH electrolyte, 99.76% of specific capacitance was retained, showing the excellent stability of Co3O4 nanorods modified electrode.
引用
收藏
页码:5467 / 5476
页数:10
相关论文
共 50 条
  • [11] Solvothermal synthesis and capacitance performance of Co3O4 nanocubes
    Huang Ke-Long
    Zeng Wen-Wen
    Yang You-Ping
    Liu Su-Qin
    Liu Ren-Sheng
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2007, 23 (09) : 1555 - 1560
  • [12] Hydrothermally synthesized mesoporous Co3O4 nanorods as effective supercapacitor material
    Kalpana, S.
    Bhat, Vinay S.
    Hegde, Gurumurthy
    Prabhu, T. Niranjana
    Anantharamaiah, P. N.
    INORGANIC CHEMISTRY COMMUNICATIONS, 2023, 154
  • [13] Synthesis and Capacitance Performance of Co3O4/CoO/Co/graphite Composite
    Li Yanhua
    Huang Kelong
    ACTA CHIMICA SINICA, 2011, 69 (18) : 2185 - 2190
  • [14] Porous Co3O4 nanorods as anode for lithium-ion battery with excellent electrochemical performance
    Guo, Jinxue
    Chen, Lei
    Zhang, Xiao
    Chen, Haoxin
    JOURNAL OF SOLID STATE CHEMISTRY, 2014, 213 : 193 - 197
  • [15] Solvothermal synthesis and capacitance performance of Co3O4 with different morphologies
    Zeng Wen-Wen
    Huang Ke-Long
    Yang You-Ping
    Liu Su-Qin
    Liu Ren-Sheng
    ACTA PHYSICO-CHIMICA SINICA, 2008, 24 (02) : 263 - 268
  • [16] Porous Co3O4 Nanoplates: Electrochemical Synthesis, Characterization and Investigation of Supercapacitive Performance
    Razmjoo, Parastoo
    Sabour, Behrouz
    Dalvand, Somayeh
    Aghazadeh, Mustafa
    Ganjali, Mohammad Reza
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (05) : D293 - D300
  • [17] Synthesis of CoC2O4•2H2O nanorods and their thermal decomposition to Co3O4 nanoparticles
    Ren, Ling
    Wang, Panpan
    Han, Yushun
    Hu, Changwen
    Wei, Bingqing
    CHEMICAL PHYSICS LETTERS, 2009, 476 (1-3) : 78 - 83
  • [18] Preparation of nanocrystalline Co3O4 and its catalytic performance for thermal decomposition of ammonium perchlorate
    Chen, WF
    Li, FS
    Liu, JX
    Song, HC
    Yu, JY
    CHINESE JOURNAL OF CATALYSIS, 2005, 26 (12) : 1073 - 1077
  • [19] Characterization and catalytic activity for the NO decomposition and reduction by CO of nanosized Co3O4
    Zhang, ZL
    Geng, HR
    Zheng, LS
    Du, B
    JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 392 (1-2) : 317 - 321
  • [20] Porous Co3O4 nanowires and nanorods: Highly active catalysts for the combustion of toluene
    Bai, Guangmei
    Dai, Hongxing
    Deng, Jiguang
    Liu, Yuxi
    Wang, Fang
    Zhao, Zhenxuan
    Qiu, Wenge
    Au, Chak Tong
    APPLIED CATALYSIS A-GENERAL, 2013, 450 : 42 - 49