Semantic segmentation of high-resolution remote sensing images using fully convolutional network with adaptive threshold

被引:52
|
作者
Wu, Zhihuan [1 ]
Gao, Yongming [2 ]
Li, Lei [3 ]
Xue, Junshi [1 ]
Li, Yuntao [3 ]
机构
[1] Space Engn Univ, Grad Sch, Beijing, Peoples R China
[2] Space Engn Univ, Space Informat, Beijing, Peoples R China
[3] Space Engn Univ, Dept Elect & Opt Engn, Beijing, Peoples R China
关键词
Semantic segmentation; remote sensing images; fully convolutional network; class imbalance; adaptive threshold; OBJECT DETECTION; CLASSIFICATION;
D O I
10.1080/09540091.2018.1510902
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic segmentation is an important method to implement fine-grained semantically understand for high-resolution remote sensing images by dividing images into pixel groupings which can then be labelled and classified. In the field of computer vision (CV), the methods based on fully convolutional network (FCN) are the hotspot and have achieved state-of-the-art results. Compared with popular datasets in CV such as PASCAL and COCO, class imbalance is a problem for multiclass semantic segmentation in remote sensing datasets. In this paper, an FCN-based model is proposed to implement pixel-wise classifications for remote sensing image in an end-to-end way, and an adaptive threshold algorithm is proposed to adjust the threshold of Jaccard index in each class. Experiments on DSTL dataset show that the proposed method produces accurate classifications in an end-to-end way. Results show that the adaptive threshold algorithm can increase the score of average Jaccard index from 0.614 to 0.636 and achieve better segmentation results.
引用
收藏
页码:169 / 184
页数:16
相关论文
共 50 条
  • [1] Fully convolutional DenseNet with adversarial training for semantic segmentation of high-resolution remote sensing images
    Guo, Xuejun
    Chen, Zehua
    Wang, Chengyi
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (01)
  • [2] EFCNet: Ensemble Full Convolutional Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Chen, Li
    Dou, Xin
    Peng, Jian
    Li, Wenbo
    Sun, Bingyu
    Li, Haifeng
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [3] Edge Guidance Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Ni, Yue
    Liu, Jiahang
    Cui, Jian
    Yang, Yuze
    Wang, Xiaozhen
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 9809 - 9822
  • [4] Dynamic High-Resolution Network for Semantic Segmentation in Remote-Sensing Images
    Guo, Shichen
    Yang, Qi
    Xiang, Shiming
    Wang, Pengfei
    Wang, Xuezhi
    [J]. REMOTE SENSING, 2023, 15 (09)
  • [5] A Deformable Attention Network for High-Resolution Remote Sensing Images Semantic Segmentation
    Zuo, Renxiang
    Zhang, Guangyun
    Zhang, Rongting
    Jia, Xiuping
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Multiscale Cascaded Network for the Semantic Segmentation of High-Resolution Remote Sensing Images
    Zhang, Xiaolu
    Wang, Zhaoshun
    Wei, Anlei
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2023, 49 (01)
  • [7] Semantic Segmentation of High-Resolution Remote Sensing Images Using Multiscale Skip Connection Network
    Ma, Bifang
    Chang, Chih-Yung
    [J]. IEEE SENSORS JOURNAL, 2022, 22 (04) : 3745 - 3755
  • [8] SEMANTIC SEGMENTATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES USING AN IMPROVED TRANSFORMER
    Liu, Yuheng
    Mei, Shaohui
    Zhang, Shun
    Wang, Ye
    He, Mingyi
    Du, Qian
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3496 - 3499
  • [9] A Semantic Segmentation Approach Based on DeepLab Network in High-Resolution Remote Sensing Images
    Hu, Hangtao
    Cai, Shuo
    Wang, Wei
    Zhang, Peng
    Li, Zhiyong
    [J]. IMAGE AND GRAPHICS, ICIG 2019, PT III, 2019, 11903 : 292 - 304
  • [10] Multiscale Global Context Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Zeng, Qiaolin
    Zhou, Jingxiang
    Tao, Jinhua
    Chen, Liangfu
    Niu, Xuerui
    Zhang, Yumeng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62