An ultrasonic metallic Fabry-Perot metamaterial for use in water

被引:7
|
作者
Askari, Meisam [1 ]
Hutchins, David A. [2 ]
Watson, Richard L. [2 ]
Astolfi, Lorenzo [2 ]
Nie, Luzhen [3 ]
Freear, Steven [3 ]
Thomas, Peter J. [2 ]
Laureti, Stefano [4 ,5 ]
Ricci, Marco [5 ]
Clark, Matt [6 ]
Clare, Adam T. [1 ]
机构
[1] Univ Nottingham, Dept Mech Mat & Mfg Engn, Univ Pk, Nottingham NG7 2RD, England
[2] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
[3] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
[4] Univ Perugia, Dept Engn, Str Pentima 4, I-05100 Terni, Italy
[5] Univ Calabria, Dept Informat Modelling Elect & Syst Engn, I-87036 Arcavacata Di Rende, Italy
[6] Univ Nottingham, Fac Engn, Opt & Photon, Univ Pk, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
Acoustic metamaterials; Additive manufacturing; Selective laser melting; Fabry-Perot resonance;
D O I
10.1016/j.addma.2020.101309
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fabry-Perot ultrasonic metamaterials have been additively manufactured using laser powder bed fusion to contain subwavelength holes with a high aspect-ratio of width to depth. Such metamaterials require the acoustic impedance mismatch between the structure and the immersion medium to be large. It is shown for the first time that metallic structures fulfil this criterion for applications in water over the 200-800 kHz frequency range. It is also demonstrated that laser powder bed fusion is a flexible fabrication method for the ceration of structures with different thicknesses, hole geometry and tapered openings, allowing the acoustic properties to be modified. It was confirmed via both finite element simulation and practical measurements that these structures supported Fabry-Perot resonances, needed for metamaterial operation, at ultrasonic frequencies in water. It was also demonstrated the the additively-manufactured structures detected the presence of a sub-wavelength slit aperture in water.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Mode hybridization and interaction in a metallic meander Fabry-Perot cavity
    Fu, Liwei
    Schweizer, Heinz
    Weiss, Thomas
    Schau, Philipp
    Frenner, Karsten
    Osten, Wolfgang
    Giessen, Harald
    THIRD INTERNATIONAL WORKSHOP ON THEORETICAL AND COMPUTATIONAL NANOPHOTONICS - TACONA-PHOTONICS 2010, 2010, 1291 : 115 - +
  • [22] FABRY-PEROT DILATOMETER
    BOTTOM, VE
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1964, 35 (03): : 374 - &
  • [23] THE FABRY-PEROT MONOCHROMATOR
    GEAKE, JE
    RING, J
    WOOLF, NJ
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1959, 119 (06) : 616 - 628
  • [24] QUANTOMETRE FABRY-PEROT
    BENMENA, T
    JOURNAL DE PHYSIQUE, 1967, 28 (3-4S): : 239 - &
  • [25] USE OF REFLECTED LIGHT IN THE WORK WITH A FABRY-PEROT ETALON
    ODINTSOV, VI
    OPTIKA I SPEKTROSKOPIYA, 1961, 11 (04): : 553 - 555
  • [26] INFLUENCE OF FABRY-PEROT RESONANCE ON MODULATION PROPERTIES OF TUNABLE METAMATERIAL IN TERAHERTZ REGION
    Slekas, Gediminas
    Kancleris, Zilvinas
    Seliuta, Dalius
    5TH INTERNATIONAL CONFERENCE RADIATION INTERACTION WITH MATERIALS: FUNDAMENTALS AND APPLICATIONS 2014, 2014, : 47 - 50
  • [27] A Novel Broadband Fabry-Perot Resonator Antenna with Gradient Index Metamaterial Superstrate
    Liu, Zhen-guo
    Qiang, Rui
    Cao, Zhen-xin
    2010 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2010,
  • [28] USE OF A SOLID FABRY-PEROT INTERFEROMETER FOR CORONAL PHOTOGRAPHY
    FISHER, R
    SOLAR PHYSICS, 1971, 18 (02) : 253 - &
  • [29] Fresnel coefficients and Fabry-Perot formula for spatially dispersive metallic layers
    Pitelet, Armel
    Mallet, Emilien
    Centeno, Emmanuel
    Moreau, Antoine
    PHYSICAL REVIEW B, 2017, 96 (04)
  • [30] Fiber Optic Fabry-Perot Ultrasonic Sensor for Solid-State Ultrasonic Detection
    Lv, Ri-Qing
    Guo, Peng
    Tong, Shuang
    Li, Shou-Qi
    Deng, Wei
    IEEE SENSORS JOURNAL, 2024, 24 (13) : 20638 - 20644