An ultrasonic metallic Fabry-Perot metamaterial for use in water

被引:7
|
作者
Askari, Meisam [1 ]
Hutchins, David A. [2 ]
Watson, Richard L. [2 ]
Astolfi, Lorenzo [2 ]
Nie, Luzhen [3 ]
Freear, Steven [3 ]
Thomas, Peter J. [2 ]
Laureti, Stefano [4 ,5 ]
Ricci, Marco [5 ]
Clark, Matt [6 ]
Clare, Adam T. [1 ]
机构
[1] Univ Nottingham, Dept Mech Mat & Mfg Engn, Univ Pk, Nottingham NG7 2RD, England
[2] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
[3] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
[4] Univ Perugia, Dept Engn, Str Pentima 4, I-05100 Terni, Italy
[5] Univ Calabria, Dept Informat Modelling Elect & Syst Engn, I-87036 Arcavacata Di Rende, Italy
[6] Univ Nottingham, Fac Engn, Opt & Photon, Univ Pk, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
Acoustic metamaterials; Additive manufacturing; Selective laser melting; Fabry-Perot resonance;
D O I
10.1016/j.addma.2020.101309
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fabry-Perot ultrasonic metamaterials have been additively manufactured using laser powder bed fusion to contain subwavelength holes with a high aspect-ratio of width to depth. Such metamaterials require the acoustic impedance mismatch between the structure and the immersion medium to be large. It is shown for the first time that metallic structures fulfil this criterion for applications in water over the 200-800 kHz frequency range. It is also demonstrated that laser powder bed fusion is a flexible fabrication method for the ceration of structures with different thicknesses, hole geometry and tapered openings, allowing the acoustic properties to be modified. It was confirmed via both finite element simulation and practical measurements that these structures supported Fabry-Perot resonances, needed for metamaterial operation, at ultrasonic frequencies in water. It was also demonstrated the the additively-manufactured structures detected the presence of a sub-wavelength slit aperture in water.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] THE USE OF METALLIC MESH FOR A FAR INFRARED FABRY-PEROT ETALON
    RENK, KF
    GENZEL, L
    SPECTROCHIMICA ACTA, 1962, 18 (10): : 1393 - 1393
  • [2] A metallic Fabry-Perot directive antenna
    Guérin, N
    Enoch, S
    Tayeb, G
    Sabouroux, P
    Vincent, P
    Legay, H
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2006, 54 (01) : 220 - 224
  • [3] Extrinsic Fabry-Perot ultrasonic detector
    Kidwell, JJ
    Berthold, JW
    FIBER OPTIC AND LASER SENSORS XIV, 1996, 2839 : 174 - 180
  • [4] Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures
    Liu, Xing-Xiang
    Powell, David A.
    Alu, Andrea
    PHYSICAL REVIEW B, 2011, 84 (23)
  • [5] Critical coupling in a Fabry-Perot cavity with metamaterial mirrors
    Deb, Subimal
    Gupta, S. Dutta
    OPTICS COMMUNICATIONS, 2010, 283 (23) : 4764 - 4769
  • [6] Absorptive Fabry-Perot Interference in a Metallic Nanostructure
    Wang, Rui
    Wu, Yan-Ling
    Yu, B. H.
    Hu, Li-Li
    Gu, C. Z.
    Li, J. J.
    Zhao, Jimin
    CHINESE PHYSICS LETTERS, 2019, 36 (02)
  • [7] FABRY-PEROT MODULATOR FOR SPACE USE
    ELLIS, B
    INFRARED PHYSICS, 1972, 12 (03): : 197 - &
  • [8] CONSTRUCTION AND USE OF A FABRY-PEROT INTERFEROMETER
    HILTON, WA
    AMERICAN JOURNAL OF PHYSICS, 1962, 30 (10) : 724 - &
  • [9] THE USE OF CCDS IN FABRY-PEROT SPECTROMETERS
    WALTON, D
    VANDERWAL, JJ
    ZHAO, P
    APPLIED SPECTROSCOPY, 1992, 46 (02) : 373 - 375
  • [10] Fabry-Perot resonance of water waves
    Couston, Louis-Alexandre
    Guo, Qiuchen
    Chamanzar, Maysamreza
    Alam, Mohammad-Reza
    PHYSICAL REVIEW E, 2015, 92 (04):