Hyperbolic formulations of general relativity with Hamiltonian structure

被引:4
|
作者
Hilditch, David [1 ]
Richter, Ronny [2 ]
机构
[1] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany
[2] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
来源
PHYSICAL REVIEW D | 2012年 / 86卷 / 12期
关键词
SYSTEMS; 2ND-ORDER;
D O I
10.1103/PhysRevD.86.123017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
With the aim of deriving symmetric hyperbolic free-evolution systems for general relativity (GR) that possess Hamiltonian structure and allow for the popular puncture coordinate gauge condition, we analyze the hyperbolicity of Hamiltonian systems. We develop helpful tools which are applicable to either the first order in time, second order in space or the fully second order form of the equations of motion. For toy models we find that the Hamiltonian structure can simplify the proof of symmetric hyperbolicity. In GR we use a special structure of the principal part to prove symmetric hyperbolicity of a formulation that includes conditions which are very similar to the puncture coordinate gauge. DOI: 10.1103/PhysRevD.86.123017
引用
下载
收藏
页数:24
相关论文
共 50 条
  • [1] Hyperbolicity of Hamiltonian formulations in General Relativity
    Richter, Ronny
    Hilditch, David
    SPANISH RELATIVITY MEETING (ERE 2010): GRAVITY AS A CROSSROAD IN PHYSICS, 2011, 314
  • [2] Analysis of the Hamiltonian formulations of linearized general relativity
    K. R. Green
    N. Kiriushcheva
    S. V. Kuzmin
    The European Physical Journal C, 2011, 71
  • [3] Analysis of the Hamiltonian formulations of linearized general relativity
    Green, K. R.
    Kiriushcheva, N.
    Kuzmin, S. V.
    EUROPEAN PHYSICAL JOURNAL C, 2011, 71 (06):
  • [4] On Canonical Transformations between Equivalent Hamiltonian Formulations of General Relativity
    Frolov, A. M.
    Kiriushcheva, N.
    Kuzmin, S. V.
    GRAVITATION & COSMOLOGY, 2011, 17 (04): : 314 - 323
  • [5] Planck length in classical and quantum Hamiltonian formulations of general relativity
    Cremaschini, Claudio
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (08):
  • [6] On canonical transformations between equivalent hamiltonian formulations of general relativity
    A. M. Frolov
    N. Kiriushcheva
    S. V. Kuzmin
    Gravitation and Cosmology, 2011, 17 : 314 - 323
  • [7] Planck length in classical and quantum Hamiltonian formulations of general relativity
    Claudio Cremaschini
    The European Physical Journal C, 83
  • [8] Linking the ADM formulation to other Hamiltonian formulations of general relativity
    Montesinos, Merced
    Romero, Jorge
    PHYSICAL REVIEW D, 2023, 107 (04)
  • [9] Mixed hyperbolic-second-order-parabolic formulations of general relativity
    Paschalidis, Vasileios
    PHYSICAL REVIEW D, 2008, 78 (02):
  • [10] Discrete Hamiltonian for general relativity
    Ziprick, Jonathan
    Gegenberg, Jack
    PHYSICAL REVIEW D, 2016, 93 (04)