Predicting High-Order Directional Drug-Drug Interaction Relations

被引:2
|
作者
Ning, Xia [1 ]
Shen, Li [2 ]
Li, Lang [3 ]
机构
[1] Indiana Univ Purdue Univ, Comp & Informat Sci, Indianapolis, IN 46202 USA
[2] Indiana Univ Sch Med, Radiol & Imaging Sci, Indianapolis, IN 46202 USA
[3] Indiana Univ Sch Med, Med & Mol Genet, Indianapolis, IN 46202 USA
来源
2017 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI) | 2017年
基金
美国国家科学基金会;
关键词
High-Order Drug-Drug Interactions; Support Vector Machines; SIMILARITY;
D O I
10.1109/ICHI.2017.76
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High-order Drug-Drug Interactions (DDI) are common particularly for elderly people. It is highly non-trivial to detect such interactions via in vivo/in vitro experiments. In this paper, we present SVM-based classification methods to predict whether a high-order directional drug-drug interaction (HoDDDI) instance is associated with adverse drug reactions (ADRs) and induced side effects. Specifically, we developed kernels for HoDDDI instances of arbitrary orders that are constructed from various single-drug information. The experiments over datasets extracted from electronic health records demonstrate that our classification methods can achieve the best F1 as 0.793.
引用
收藏
页码:556 / 561
页数:6
相关论文
共 50 条
  • [21] Predicting inhibitory drug-drug interactions and evaluating drug interaction reports using inhibition constants
    Bachmann, KA
    Lewis, JD
    ANNALS OF PHARMACOTHERAPY, 2005, 39 (06) : 1064 - 1072
  • [22] High Throughput Drug-Drug Interaction Screening on the FlashQuant™ Workstation
    Zhong, Feng
    Ghobarah, Hesham
    Lebre, Daniel
    Impey, Gary
    Corr, Jay
    LC GC NORTH AMERICA, 2009, : 12 - 15
  • [23] DDI-Transform: A neural network for predicting drug-drug interaction events
    Su, Jiaming
    Qian, Ying
    QUANTITATIVE BIOLOGY, 2024, 12 (02) : 155 - 163
  • [24] DDIGIP: predicting drug-drug interactions based on Gaussian interaction profile kernels
    Cheng Yan
    Guihua Duan
    Yi Pan
    Fang-Xiang Wu
    Jianxin Wang
    BMC Bioinformatics, 20
  • [25] MDNN: A Multimodal Deep Neural Network for Predicting Drug-Drug Interaction Events
    Lyu, Tengfei
    Gao, Jianliang
    Tian, Ling
    Li, Zhao
    Zhang, Peng
    Zhang, Ji
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3536 - 3542
  • [26] Drug Repurposing Based on Drug-Drug Interaction
    Zhou, Bin
    Wang, Rong
    Wu, Ping
    Kong, De-Xin
    CHEMICAL BIOLOGY & DRUG DESIGN, 2015, 85 (02) : 137 - 144
  • [27] MecDDI: Clarified Drug-Drug Interaction Mechanism Facilitating Rational Drug Use and Potential Drug-Drug Interaction Prediction
    Hu, Wei
    Zhang, Wei
    Zhou, Ying
    Luo, Yongchao
    Sun, Xiuna
    Xu, Huimin
    Shi, Shuiyang
    Li, Teng
    Xu, Yichao
    Yang, Qianqian
    Qiu, Yunqing
    Zhu, Feng
    Dai, Haibin
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (05) : 1626 - 1636
  • [28] Assessment of drug-drug interaction for silymarin
    Doehmer, Johannes
    Tewes, Bernhard
    Klein, Kai-Uwe
    Gritzko, Kristin
    Muschick, Holger
    Mengs, Ulrich
    TOXICOLOGY IN VITRO, 2008, 22 (03) : 610 - 617
  • [29] The economic consequences of a drug-drug interaction
    Shad, MU
    Marsh, C
    Preskorn, SH
    JOURNAL OF CLINICAL PSYCHOPHARMACOLOGY, 2001, 21 (01) : 119 - 120
  • [30] DRUG-DRUG INTERACTION PREDICTION ASSESSMENT
    Zhou, Jihao
    Qin, Zhaohui
    Sara, Quinney K.
    Kim, Seongho
    Wang, Zhiping
    Hall, Stephen D.
    Li, Lang
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2009, 19 (04) : 641 - 657