Fault Detection and Isolation for Wind Turbine Electric Pitch System

被引:0
|
作者
Zhu, Jiangsheng [1 ]
Ma, Kuichao [1 ]
Hajizadeh, Amin [1 ]
Soltani, Mohsen [1 ]
Chen, Zhe [2 ]
机构
[1] Aalborg Univ, Energy Technol Dept, Esbjerg, Denmark
[2] Aalborg Univ, Energy Technol Dept, Aalborg, Denmark
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a model-based fault detection and isolation scheme applied on electric pitch system of wind turbines. Pitch system is one of the most critical components due to its effect on the operational safety and the dynamics of wind turbines. Faults in this system should be precisely detected to prevent failures and decrease downtime. To detect faults of electric pitch actuators and sensors, an extended kalman filter (EKF) based multiple model adaptive estimation (MMAE) designed to estimate the states of the system. The proposed method is demonstrated in case studies. The simulation results show that the proposed method detects different fault scenarios of wind turbines under the stochastic external condition.
引用
收藏
页码:618 / 623
页数:6
相关论文
共 50 条
  • [31] Gradient fault detecting algorithm for pitch system of wind turbine using the filtering technique
    Wang, Ziyun
    Ji, Zhicheng
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 9102 - 9106
  • [32] Fault identification of pitch control system of wind turbine based on nonlinear state estimation
    Yin, Shi
    Yu, Zhongyuan
    Meng, Kaifeng
    Li, Chuang
    Wang, Qile
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2014, 34 : 160 - 165
  • [33] Fault diagnosis of pitch system of wind turbine based on standardized stacked autoencoder network
    Wang S.
    Wang T.
    Zhou L.
    Wang Y.
    Chen T.
    Zhao S.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (02): : 394 - 401
  • [34] Bayesian regularized artificial neural network for fault detection and isolation in wind turbine
    El Bakri, Ayoub
    Berrada, Youssef
    Boumhidi, Ismail
    2017 INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV), 2017,
  • [35] Data-driven fault detection and isolation scheme for a wind turbine benchmark
    de Bessa, Iury Valente
    Palhares, Reinaldo Martinez
    Silveira Vasconcelos D'Angelo, Marcos Flavio
    Chaves Filho, Joao Edgar
    RENEWABLE ENERGY, 2016, 87 : 634 - 645
  • [36] Fault detection and diagnosis of a blade pitch system in a floating wind turbine based on Kalman filters and artificial neural networks
    Cho, Seongpil
    Choi, Minjoo
    Gao, Zhen
    Moan, Torgeir
    RENEWABLE ENERGY, 2021, 169 : 1 - 13
  • [37] Comparison of novel SCADA Data Cleaning Technique for Wind Turbine Electric Pitch System
    McKinnon, C.
    Tartt, K.
    Carroll, J.
    McDonald, A.
    Plumley, C.
    Ferguson, D.
    WINDEUROPE ELECTRIC CITY 2021, 2022, 2151
  • [38] A Novel Emergency Power Supply Unit in MW Wind Turbine Electric Pitch System
    Ye, ChengCheng
    PROGRESS IN RENEWABLE AND SUSTAINABLE ENERGY, PTS 1 AND 2, 2013, 608-609 : 730 - 733
  • [39] FAULT DETECTION OF WIND TURBINE PITCH CONNECTION BOLTS BASED ON TSDAS-SMOTE WITH XGBOOST
    Tang, M. I. N. G. Z. H. U.
    Meng, C. A. I. H. U. A.
    LI, L. A. N. G.
    Wu, H. U. A. W. E., I
    Wang, Y. A. N. G.
    He, J. U. N. B. I. N.
    Huang, Y. U. J. I. E.
    Yu, Y. U.
    Alassafi, M. A. D. I. N. I. O.
    Alsaadi, F. A. W. A. Z. E.
    Ahmad, A. D. I. L. M.
    Xiong, F. U. Q. I. A. N. G.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (06)
  • [40] Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection
    Correa-Jullian, Camila
    Cofre-Martel, Sergio
    San Martin, Gabriel
    Droguett, Enrique Lopez
    Pires Leite, Gustavo de Novaes
    Costa, Alexandre
    ENERGIES, 2022, 15 (08)