Solvable model for chimera states of coupled oscillators

被引:509
|
作者
Abrams, Daniel M. [1 ]
Mirollo, Rennie [2 ]
Strogatz, Steven H. [3 ]
Wiley, Daniel A. [4 ]
机构
[1] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
[2] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
[3] Cornell Univ, Dept Theoret & Appl Mech, Ithaca, NY 14853 USA
[4] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
D O I
10.1103/PhysRevLett.101.084103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Networks of identical, symmetrically coupled oscillators can spontaneously split into synchronized and desynchronized subpopulations. Such chimera states were discovered in 2002, but are not well understood theoretically. Here we obtain the first exact results about the stability, dynamics, and bifurcations of chimera states by analyzing a minimal model consisting of two interacting populations of oscillators. Along with a completely synchronous state, the system displays stable chimeras, breathing chimeras, and saddle-node, Hopf, and homoclinic bifurcations of chimeras.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Multicluster and traveling chimera states in nonlocal phase-coupled oscillators
    Xie, Jianbo
    Knobloch, Edgar
    Kao, Hsien-Ching
    PHYSICAL REVIEW E, 2014, 90 (02):
  • [42] Minimal chimera states in phase-lag coupled mechanical oscillators
    P. Ebrahimzadeh
    M. Schiek
    P. Jaros
    T. Kapitaniak
    S. van Waasen
    Y. Maistrenko
    The European Physical Journal Special Topics, 2020, 229 : 2205 - 2214
  • [43] Chimera and phase-cluster states in populations of coupled chemical oscillators
    Tinsley M.R.
    Nkomo S.
    Showalter K.
    Nature Physics, 2012, 8 (9) : 662 - 665
  • [44] Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators
    Gambuzza, Lucia Valentina
    Buscarino, Arturo
    Chessari, Sergio
    Fortuna, Luigi
    Meucci, Riccardo
    Frasca, Mattia
    PHYSICAL REVIEW E, 2014, 90 (03):
  • [45] Temporal intermittency and the lifetime of chimera states in ensembles of nonlocally coupled chaotic oscillators
    Semenova, N. I.
    Strelkova, G. I.
    Anishchenko, V. S.
    Zakharova, A.
    CHAOS, 2017, 27 (06)
  • [46] Existence and Control of Chimera States in Networks of Nonlocally Coupled Models of Neuron Oscillators
    Hizanidis, Johanne
    Kanas, Vasileios G.
    Bezerianos, Anastasios
    Bountis, Tassos
    2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 243 - 246
  • [47] Chimera dynamics in nonlocally coupled bicomponent oscillators
    Zhang, Yibin
    Wang, Peiyu
    Zhang, Mei
    Yang, Junzhong
    EPL, 2021, 135 (04)
  • [48] Does hyperbolicity impede emergence of chimera states in networks of nonlocally coupled chaotic oscillators?
    Semenova, N.
    Zakharova, A.
    Schoell, E.
    Anishchenko, V.
    EPL, 2015, 112 (04)
  • [49] Bifurcation delay, travelling waves and chimera-like states in a network of coupled oscillators
    Varshney, Vaibhav
    Kumarasamy, Suresh
    Biswal, Bibhu
    Prasad, Awadhesh
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (12-13): : 2307 - 2325
  • [50] Collective dynamics of coupled Lorenz oscillators near the Hopf boundary: Intermittency and chimera states
    Khatun, Anjuman Ara
    Muthanna, Yusra Ahmed
    Punetha, Nirmal
    Jafri, Haider Hasan
    PHYSICAL REVIEW E, 2024, 109 (03)