Prime etale groupoid algebras with applications to inverse semigroup and Leavitt path algebras

被引:11
|
作者
Steinberg, Benjamin [1 ]
机构
[1] CUNY City Coll, Dept Math, Convent Ave & 138th St, New York, NY 10031 USA
关键词
Etale groupoids; Inverse semigroups; Groupoid algebras; Leavitt path algebras; Prime rings; STEINBERG ALGEBRAS; SEMIPRIMITIVITY; SIMPLICITY;
D O I
10.1016/j.jpaa.2018.09.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give some sufficient and some necessary conditions for an etale groupoid algebra to be a prime ring. As an application we recover the known primeness results for inverse semigroup algebras and Leavitt path algebras. It turns out that primeness of the algebra is connected with the dynamical property of topological transitivity of the groupoid. We obtain analogous results for semiprimeness. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2474 / 2488
页数:15
相关论文
共 50 条
  • [41] Representations of Leavitt path algebras
    Koc, Ayten
    Ozaydin, Murad
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (03) : 1297 - 1319
  • [42] Higher-Rank Graph C *-Algebras: An Inverse Semigroup and Groupoid Approach
    Cynthia Farthing
    Paul S. Muhly
    Trent Yeend
    Semigroup Forum, 2005, 71 : 159 - 187
  • [43] Leavitt path algebras for order prime Cayley graphs of finite groups
    Das, Sumanta
    Sen, Mridul Kanti
    Maity, Sunil Kumar
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [44] Leavitt Path Algebras of Hypergraphs
    Preusser, Raimund
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (01): : 185 - 221
  • [45] Derivations of Leavitt path algebras
    Lopatkin, Viktor
    JOURNAL OF ALGEBRA, 2019, 520 : 59 - 89
  • [46] Leavitt path algebras are Bezout
    Abrams, Gene
    Mantese, Francesca
    Tonolo, Alberto
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 228 (01) : 53 - 78
  • [47] Completions of Leavitt path algebras
    Alahmadi, Adel
    Alsulami, Hamed
    BULLETIN OF MATHEMATICAL SCIENCES, 2016, 6 (01) : 145 - 161
  • [48] Leavitt Path Algebras of Hypergraphs
    Raimund Preusser
    Bulletin of the Brazilian Mathematical Society, New Series, 2020, 51 : 185 - 221
  • [49] Higher-rank graph C*-algebras:: An inverse semigroup and groupoid approach
    Farthing, C
    Muhly, PS
    Yeend, T
    SEMIGROUP FORUM, 2005, 71 (02) : 159 - 187
  • [50] Graph C*-Algebras, and Their Relationship to Leavitt Path Algebras
    Abrams, Gene
    Ara, Pere
    Siles Molina, Mercedes
    LEAVITT PATH ALGEBRAS, 2017, 2191 : 185 - 217