De novo assembly and comparative transcriptome analysis: novel insights into terpenoid biosynthesis in Chamaemelum nobile L.

被引:24
|
作者
Liu, Xiaomeng [1 ]
Wang, Xiaohui [2 ]
Chen, Zexiong [3 ]
Ye, Jiabao [1 ]
Liao, Yongling [1 ]
Zhang, Weiwei [1 ]
Chang, Jie [4 ,5 ]
Xu, Feng [1 ]
机构
[1] Yangtze Univ, Coll Hort & Gardening, Jingzhou 434025, Hubei, Peoples R China
[2] Enshi Autonomous Prefecture Acad Agr Sci, Enshi 445000, Hubei, Peoples R China
[3] Chongqing Univ Arts & Sci, Res Inst Special Plants, Chongqing 402160, Peoples R China
[4] Jingchu Univ Technol, Hubei Collaborat Innovat Ctr Targeted Antitumor D, Jingmen 448000, Hubei, Peoples R China
[5] Jingchu Univ Technol, Coll Chem Engn & Pharm, Jingmen 448000, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Chamaemelum nobile; Differentially expressed genes; High-throughput sequencing; Real-time PCR; Terpenoid biosynthesis; MEVALONATE PATHWAY; GENE-EXPRESSION; SYNTHASE GENE; FLORAL SCENT; TOOL; QUANTIFICATION; SNAPDRAGON; LINALOOL; CLONING;
D O I
10.1007/s00299-018-2352-z
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Key messageAnalysis of terpenoids content, transcriptome from Chamaemelum nobile showed that the content of the terpenoids in the roots was the highest and key genes involved in the terpenoids synthesis pathway were identified.AbstractChamaemelum nobile is a widely used herbaceous medicinal plant rich in volatile oils, mainly composed of terpenoids. It is widely used in food, cosmetics, medicine, and other fields. In this study, we analyzed the transcriptome and the content and chemical composition of the terpenoids in different organs of C. nobile. Gas chromatography-mass spectrometry analysis showed that the total content of the terpenoids among C. nobile organs was highest in the roots, followed by the flowers. Illumina HiSeq 2500 high-throughput sequencing technology was used to sequence the transcripts of roots, stems, leaves, and flowers of C. nobile. We obtained 139,757 unigenes using the Trinity software assembly. A total of 887 unigenes were annotated to secondary metabolism. In total, 55,711 differentially expressed genes were screened among different organs of C. nobile. We identified 16 candidate genes that may be involved in the terpenoid biosynthesis from C. nobile and analyzed their expression patterns using real-time PCR. Results showed that the expression pattern of these genes was tissue-specific and had significant differential expression levels in different organs of C. nobile. Among these genes, 13 were expressed in roots with the highest levels. Furthermore, the transcript levels of these 13 genes were positively correlated with the content of -pinene, -phellandrene, 1,8-cineole, camphor, -terpineol, carvacrol, (E,E)-farnesol and chamazulene, suggesting that these 13 genes may be involved in the regulation of the synthesis of the volatile terpenoids. These results laid the foundation for the subsequent improvement of C. nobile quality through genetic engineering.
引用
收藏
页码:101 / 116
页数:16
相关论文
共 50 条
  • [21] De novo assembly and comparative analysis of the transcriptome of embryogenic callus formation in bread wheat (Triticum aestivum L.)
    Chu, Zongli
    Chen, Junying
    Sun, Junyan
    Dong, Zhongdong
    Yang, Xia
    Wang, Ying
    Xu, Haixia
    Zhang, Xiaoke
    Chen, Feng
    Cui, Dangqun
    BMC PLANT BIOLOGY, 2017, 17
  • [22] De novo assembly and comparative analysis of the transcriptome of embryogenic callus formation in bread wheat (Triticum aestivum L.)
    Zongli Chu
    Junying Chen
    Junyan Sun
    Zhongdong Dong
    Xia Yang
    Ying Wang
    Haixia Xu
    Xiaoke Zhang
    Feng Chen
    Dangqun Cui
    BMC Plant Biology, 17
  • [23] De novo assembly and comparative analysis of the Ceratodon purpureus transcriptome
    Szoevenyi, Peter
    Perroud, Pierre-Francois
    Symeonidi, Aikaterini
    Stevenson, Sean
    Quatrano, Ralph S.
    Rensing, Stefan A.
    Cuming, Andrew C.
    McDaniel, Stuart F.
    MOLECULAR ECOLOGY RESOURCES, 2015, 15 (01) : 203 - 215
  • [24] De novo assembly and analysis of the transcriptome of Rumex patientia L. during cold stress
    Liu, Jianxin
    Xu, Yongqing
    Zhang, Liguo
    Li, Wei
    Cai, Zhenxue
    Li, Fei
    Peng, Mu
    Li, Fenglan
    Hu, Baozhong
    PLOS ONE, 2017, 12 (10):
  • [25] De Novo Assembly and Comparative Transcriptome Analysis Provide Insight into Lysine Biosynthesis in Toona sinensis Roem
    Zhang, Xia
    Song, Zhenqiao
    Liu, Tian
    Guo, Linlin
    Li, Xingfeng
    INTERNATIONAL JOURNAL OF GENOMICS, 2016, 2016
  • [26] De Novo Assembly of the Pea (Pisum sativum L.) Nodule Transcriptome
    Zhukov, Vladimir A.
    Zhernakov, Alexander I.
    Kulaeva, Olga A.
    Ershov, Nikita I.
    Borisov, Alexey Y.
    Tikhonovich, Igor A.
    INTERNATIONAL JOURNAL OF GENOMICS, 2015, 2015
  • [27] Data of de novo assembly of fruit transcriptome in Aegle marmelos L.
    Kaushik, Prashant
    Kumar, Shashi
    DATA IN BRIEF, 2019, 25
  • [28] De novo transcriptome assembly of mangosteen (Garcinia mangostana L.) fruit
    Matra, Deden Derajat
    Kozaki, Toshinori
    Ishii, Kazuo
    Poerwanto, Roedhy
    Inoue, Eiichi
    GENOMICS DATA, 2016, 10 : 35 - 37
  • [29] Sequencing, de novo assembly and comparative analysis of Raphanus sativus transcriptome
    Wu, Gang
    Zhang, Libin
    Yin, Yongtai
    Wu, Jiangsheng
    Yu, Longjiang
    Zhou, Yanhong
    Li, Maoteng
    FRONTIERS IN PLANT SCIENCE, 2015, 6
  • [30] De novo transcriptome analysis and identification of candidate genes associated with triterpenoid biosynthesis in Trichosanthes cucumerina L.
    Lertphadungkit, Pornpatsorn
    Qiao, Xue
    Sirikantaramas, Supaart
    Satitpatipan, Veena
    Ye, Min
    Bunsupa, Somnuk
    PLANT CELL REPORTS, 2021, 40 (10) : 1845 - 1858