The Collection 6 MODIS aerosol products over land and ocean

被引:1709
|
作者
Levy, R. C. [1 ]
Mattoo, S. [1 ,2 ]
Munchak, L. A. [1 ,2 ]
Remer, L. A. [3 ]
Sayer, A. M. [1 ,4 ]
Patadia, F. [1 ,5 ]
Hsu, N. C. [1 ]
机构
[1] NASA, Goddard Space Flight Ctr, Climate & Radiat Lab, Greenbelt, MD 20771 USA
[2] Sci Syst & Applicat Inc, Lanham, MD 20709 USA
[3] Univ Maryland Baltimore Cty, JCET, Baltimore, MD 21228 USA
[4] Univ Space Res Assoc, Columbia, MD USA
[5] Morgan State Univ, Baltimore, MD 21239 USA
关键词
IMAGING SPECTRORADIOMETER MODIS; OPTICAL DEPTH; SIZE DISTRIBUTION; AIRBORNE SIMULATOR; DATA-ASSIMILATION; TREND ANALYSIS; RETRIEVAL; SYSTEM; CLOUD; VALIDATION;
D O I
10.5194/amt-6-2989-2013
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The twin Moderate resolution Imaging Spectroradiometer (MODIS) sensors have been flying on Terra since 2000 and Aqua since 2002, creating an extensive data set of global Earth observations. Here, we introduce the Collection 6 (C6) algorithm to retrieve aerosol optical depth (AOD) and aerosol size parameters from MODIS-observed spectral reflectance. While not a major overhaul from the previous Collection 5 (C5) version, there are enough changes that there are significant impacts to the products and their interpretation. The C6 aerosol data set will be created from three separate retrieval algorithms that operate over different surface types. These are the two "Dark Target"(DT) algorithms for retrieving (1) over ocean (dark in visible and longer wavelengths) and (2) over vegetated/dark-soiled land (dark in the visible), plus the "Deep Blue"(DB) algorithm developed originally for retrieving (3) over desert/arid land (bright in the visible). Here, we focus on DT-ocean and DT-land (# 1 and # 2). We have updated assumptions for central wavelengths, Rayleigh optical depths and gas (H2O, O-3, CO2, etc.) absorption corrections, while relaxing the solar zenith angle limit (up to <= 84 degrees) to increase poleward coverage. For DT-land, we have updated the cloud mask to allow heavy smoke retrievals, fine-tuned the assignments for aerosol type as function of season/location, corrected bugs in the Quality Assurance (QA) logic, and added diagnostic parameters such topographic altitude. For DT-ocean, improvements include a revised cloud mask for thin-cirrus detection, inclusion of wind speed dependence on the surface reflectance, updates to logic of QA Confidence flag (QAC) assignment, and additions of important diagnostic information. At the same time, we quantified how "upstream"changes to instrument calibration, land/sea masking and cloud masking will also impact the statistics of global AOD, and affect Terra and Aqua differently. For Aqua, all changes will result in reduced global AOD (by 0.02) over ocean and increased AOD (by 0.02) over land, along with changes in spatial coverage. We compared preliminary data to surface-based sun photometer data, and show that C6 should improve upon C5. C6 will include a merged DT/DB product over semi-arid land surfaces for reduced-gap coverage and better visualization, and new information about clouds in the aerosol field. Responding to the needs of the air quality community, in addition to the standard 10 km product, C6 will include a global (DT-land and DT-ocean) aerosol product at 3 km resolution.
引用
收藏
页码:2989 / 3034
页数:46
相关论文
共 50 条
  • [21] Mapping snow cover from daily Collection 6 MODIS products over Austria
    Tong, R.
    Parajka, J.
    Komma, J.
    Bloeschl, G.
    JOURNAL OF HYDROLOGY, 2020, 590
  • [22] Performance of MODIS Deep Blue Collection 6.1 Aerosol Optical Depth Products Over Indonesia: Spatiotemporal Variations and Aerosol Types
    Hutauruk, Rheinhart C. H.
    Permana, Donaldi S.
    Rangga, Imron A.
    Sucianingsih, Cici
    Nuraini, Tri A.
    ADVANCES IN METEOROLOGY, 2022, 2022
  • [23] Consistency of two global MODIS aerosol products over ocean on Terra and Aqua CERES SSF datasets
    Ignatov, A
    Minnis, P
    Wielicki, B
    Loeb, N
    Remer, L
    Kaufman, Y
    Miller, W
    Sun-Mack, S
    Laszlo, I
    Geier, E
    PASSIVE OPTICAL REMOTE SENSING OF THE ATMOSPHERE AND CLOUDS IV, 2004, 5652 : 89 - 98
  • [24] Development of an operational land water mask for MODIS Collection 6, and influence on downstream data products
    Carroll, M. L.
    DiMiceli, C. M.
    Townshend, J. R. G.
    Sohlberg, R. A.
    Elders, A. I.
    Devadiga, S.
    Sayer, A. M.
    Levy, R. C.
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2017, 10 (02) : 207 - 218
  • [25] Comparison and evaluation of the MODIS Collection 6 aerosol data in China
    Tao, Minghui
    Chen, Liangfu
    Wang, Zifeng
    Tao, Jinhua
    Che, Huizheng
    Wang, Xinhui
    Wang, Yang
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (14) : 6992 - 7005
  • [26] Effects of neglecting polarization on the MODIS aerosol retrieval over land
    Levy, RC
    Remer, LA
    Kaufman, YJ
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (11): : 2576 - 2583
  • [27] Evaluation of the MODIS C6 Aerosol Optical Depth Products over Chongqing, China
    Shi, Guangming
    Liu, Ruiling
    Wang, Ding Yi
    Yang, Fumo
    ATMOSPHERE, 2017, 8 (11):
  • [28] Remote sensing aerosol with MODIS and the application of MODIS aerosol products
    Li, Chengcai
    Mao, Jietai
    Lau, Alexis Kai-Hon
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2003, 39 (SUPPL.):
  • [29] Spatial variability of the aerosol optical thickness over Southern Ocean and coastal Antarctica: Comparison with MODIS and MERRA-2 aerosol products
    Shaeb, K. Hareef baba
    Biswadip, G.
    Dutta, D.
    Choudhury, S. B.
    Seshasai, M. V. R.
    DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2020, 178 (178)
  • [30] Continuity between NASA MODIS Collection 6.1 and VIIRS Collection 2 land products
    Roman, Miguel O.
    Justice, Chris
    Paynter, Ian
    Boucher, Peter B.
    Devadiga, Sadashiva
    Endsley, Arthur
    Erb, Angela
    Friedl, Mark
    Gao, Huilin
    Giglio, Louis
    Gray, Josh M.
    Hall, Dorothy
    Hulley, Glynn
    Kimball, John
    Knyazikhin, Yuri
    Lyapustin, Alexei
    Myneni, Ranga B.
    Noojipady, Praveen
    Pu, Jiabin
    Riggs, George
    Sarkar, Sudipta
    Schaaf, Crystal
    Shah, Deep
    Tran, Khuong H.
    Vermote, Eric
    Wang, Dongdong
    Wang, Zhuosen
    Wu, Aisheng
    Ye, Yongchang
    Shen, Yu
    Zhang, Shuai
    Zhang, Xiaoyang
    Zhao, Maosheng
    Davidson, Carol
    Wolfe, Robert
    REMOTE SENSING OF ENVIRONMENT, 2024, 302