MnCo2O4/NiCo2O4/rGO as a Catalyst Based on Binary Transition Metal Oxide for the Methanol Oxidation Reaction

被引:24
|
作者
Askari, Mohammad Bagher [1 ]
Azizi, Sadegh [2 ]
Moghadam, Mohammad Taghi Tourchi [2 ]
Seifi, Majid [2 ]
Rozati, Seyed Mohammad [2 ]
Di Bartolomeo, Antonio [3 ]
机构
[1] Grad Univ Adv Technol, Inst Sci & High Technol & Environm Sci, Dept Semicond, Kerman 7631818356, Iran
[2] Univ Guilan, Fac Sci, Dept Phys, Rasht 413351914, Iran
[3] Univ Salerno, Dept Phys ER Caianiello, I-84084 Fisciano, SA, Italy
关键词
reduced graphene oxide; methanol electrooxidation; MnCo2O4; NiCo2O4; rGO; methanol fuel cell; REDUCED GRAPHENE OXIDE; ENHANCED ELECTROCATALYTIC ACTIVITY; FUEL-CELL; ORGANIC FRAMEWORKS; EVOLUTION REACTION; EFFICIENT; PERFORMANCE; CARBON; NANOFLAKES; COMPOSITE;
D O I
10.3390/nano12224072
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The demands for alternative energy have led researchers to find effective electrocatalysts in fuel cells and increase the efficiency of existing materials. This study presents new nanocatalysts based on two binary transition metal oxides (BTMOs) and their hybrid with reduced graphene oxide for methanol oxidation. Characterization of the introduced three-component composite, including cobalt manganese oxide (MnCo2O4), nickel cobalt oxide (NiCo2O4), and reduced graphene oxide (rGO) in the form of MnCo2O4/NiCo2O4/rGO (MNR), was investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray (EDX) analyses. The alcohol oxidation capability of MnCo2O4/NiCo2O4 (MN) and MNR was evaluated in the methanol oxidation reaction (MOR) process. The crucial role of rGO in improving the electrocatalytic properties of catalysts stems from its large active surface area and high electrical conductivity. The alcohol oxidation tests of MN and MNR showed an adequate ability to oxidize methanol. The better performance of MNR was due to the synergistic effect of MnCo2O4/NiCo2O4 and rGO. MN and MNR nanocatalysts, with a maximum current density of 14.58 and 24.76 mA/cm(2) and overvoltage of 0.6 and 0.58 V, as well as cyclic stability of 98.3% and 99.7% (at optimal methanol concentration/scan rate of 20 mV/S), respectively, can be promising and inexpensive options in the field of efficient nanocatalysts for use in methanol fuel cell anodes.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Highly Active and Easily Fabricated NiCo2O4 Nanoflowers for Enhanced Methanol Oxidation
    Faid, Alaa Y.
    Ismail, Hadeer
    CHEMISTRYSELECT, 2019, 4 (27): : 7896 - 7903
  • [22] MnCo2O4 Nanosheet/NiCo2S4 Nanowire Heterostructures as Cathode Materials for Capacitors
    Hu, Pengfei
    Liu, Ying
    Liu, Hengqi
    Wu, Xiang
    Liu, Baodan
    ACS APPLIED NANO MATERIALS, 2021, 4 (02) : 2183 - 2189
  • [23] Extremely Flexible Methanol Sensor Based on CNFs/ NiCo2O4 Nanocomposite
    Shen, Yuhan
    Lv, Yalou
    Zhuo, Qiqi
    ACS APPLIED NANO MATERIALS, 2024, 7 (18) : 21909 - 21916
  • [24] CHARACTERIZATION OF NICO2O4 ELECTRODES FOR O-2 EVOLUTION .2. NONELECTROCHEMICAL CHARACTERIZATION OF NICO2O4 ELECTRODES
    HAENEN, J
    VISSCHER, W
    BARENDRECHT, E
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1986, 208 (02): : 297 - 321
  • [25] Zn-substituted MnCo2O4 nanostructure anchored over rGO for boosting the electrocatalytic performance towards methanol oxidation and oxygen evolution reaction (OER)
    Rebekah, A.
    Anantharaj, Sengeni
    Viswanthan, C.
    Ponpandian, N.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (29) : 14713 - 14727
  • [26] Electrochemical Properties of MnCo2O4 Spinel Bifunctional Catalyst for Oxygen Reduction and Evolution Reaction
    Cao, Xuecheng
    Jin, Chao
    Lu, Fanliang
    Yang, Zhenrong
    Shen, Ming
    Yang, Ruizhi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (05) : H296 - H300
  • [27] Efficient and Stable NiCo2O4/VN Nanoparticle Catalyst for Electrochemical Water Oxidation
    Zheng, Zhilin
    Du, Xuan
    Wang, Yi
    Li, Chang Ming
    Qi, Tao
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (09): : 11473 - 11479
  • [28] NiCo2O4 spinel/ordered mesoporous carbons as noble-metal free electrocatalysts for oxygen reduction reaction and the influence of structure of catalyst support on the electrochemical activity of NiCo2O4
    Bo, Xiangjie
    Zhang, Yufan
    Li, Mian
    Nsabimana, Anaclet
    Guo, Liping
    JOURNAL OF POWER SOURCES, 2015, 288 : 1 - 8
  • [29] MOF-Derived NiO/NiCo2O4 and NiO/NiCo2O4-rGO as Highly Efficient and Stable Electrocatalysts for Oxygen Evolution Reaction
    Wang, Yanying
    Zhang, Zhaoyi
    Liu, Xin
    Ding, Fang
    Zou, Ping
    Wang, Xianxiang
    Zhao, Qingbiao
    Rao, Hanbing
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (09): : 12511 - 12521
  • [30] Controllable synthesis of NiCo2O4, NiCo2O4/graphene composite and their electrochemical application in supercapacitors
    Wang, Xu
    Deng, Changyi
    Hong, Xiaodong
    Dong, Wei
    Liang, Bing
    JOURNAL OF ENERGY STORAGE, 2022, 55