Geometry of 2d spacetime and quantization of particle dynamics

被引:9
|
作者
Jorjadze, G [1 ]
Piechocki, W
机构
[1] Razmadze Math Inst, Tbilisi, Georgia
[2] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland
基金
俄罗斯基础研究基金会;
关键词
2d spacetime with constant curvature; dynamical integrals; canonical quantization;
D O I
10.1016/S0370-2693(99)00841-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyze classical and quantum dynamics of a relativistic particle in 2d spacetimes with constant curvature. We show that global symmetries of spacetime specify the symmetries of physical phase-space and the corresponding quantum theory. To quantize the systems we parametrize the physical phase-space by canonical coordinates, Canonical quantization leads to unitary irreducible representations of SO (up arrow) (2.1) group. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:183 / 188
页数:6
相关论文
共 50 条
  • [31] Quantization of integrable systems and a 2d/4d duality
    Dorey, Nick
    Lee, Sungjay
    Hollowood, Timothy J.
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (10):
  • [32] Quantization of integrable systems and a 2d/4d duality
    Nick Dorey
    Sungjay Lee
    Timothy J. Hollowood
    Journal of High Energy Physics, 2011
  • [33] 2d gauge theories and generalized geometry
    Kotov, Alexei
    Salnikov, Vladimir
    Strobl, Thomas
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (08):
  • [34] Polarized radiation transfer in 2D geometry
    Paletou, F
    Bommier, V
    Faurobert-Scholl, M
    SOLAR POLARIZATION, 1999, 243 : 189 - +
  • [35] Scaling and quantum geometry in 2d gravity
    Anagnostopoulos, KN
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1999, 73 : 786 - 788
  • [36] 2d gauge theories and generalized geometry
    Alexei Kotov
    Vladimir Salnikov
    Thomas Strobl
    Journal of High Energy Physics, 2014
  • [37] GEOMETRY AND SPECTRUM IN 2D MAGNETIC WELLS
    Raymond, Nicolas
    San Vu Ngoc
    ANNALES DE L INSTITUT FOURIER, 2015, 65 (01) : 137 - 169
  • [38] Differential Geometry and Dynamics of a Lightlike Point in Lorentzian Spacetime
    Kruger, Heinz
    Annales de la Fondation Louis de Broglie, 24 (1-4): : 39 - 66
  • [39] The angle-geometry of spacetime and classical charged particle motion
    Ingraham, RL
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 1998, 7 (04): : 603 - 621
  • [40] Lagrange approach in stochastic quantization of the 2D Hubbard model
    Kalinkin, AN
    Skorikov, VM
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2000, 219 (01): : 125 - 131