Geometry of 2d spacetime and quantization of particle dynamics

被引:9
|
作者
Jorjadze, G [1 ]
Piechocki, W
机构
[1] Razmadze Math Inst, Tbilisi, Georgia
[2] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland
基金
俄罗斯基础研究基金会;
关键词
2d spacetime with constant curvature; dynamical integrals; canonical quantization;
D O I
10.1016/S0370-2693(99)00841-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyze classical and quantum dynamics of a relativistic particle in 2d spacetimes with constant curvature. We show that global symmetries of spacetime specify the symmetries of physical phase-space and the corresponding quantum theory. To quantize the systems we parametrize the physical phase-space by canonical coordinates, Canonical quantization leads to unitary irreducible representations of SO (up arrow) (2.1) group. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:183 / 188
页数:6
相关论文
共 50 条
  • [1] Massless particle in 2d spacetime with constant curvature
    Jorjadze, G
    Piechocki, W
    [J]. PHYSICS LETTERS B, 1999, 448 (3-4) : 203 - 208
  • [2] Oscillator quantization of the massive scalar particle dynamics on AdS spacetime
    Dorn, H
    Jorjadze, G
    [J]. PHYSICS LETTERS B, 2005, 625 (1-2) : 117 - 126
  • [3] Spacetime quantization and geometry of momentum space
    Mir-Kasimov, RM
    [J]. PHYSICS OF ATOMIC NUCLEI, 1998, 61 (11) : 1837 - 1841
  • [4] A Modeling Method of 2D Complex Geometry for Particle Method
    Kang, Jiangnan
    Sun, Yijie
    Sun, Zhongguo
    Xi, Guang
    [J]. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2023, 57 (07): : 160 - 168
  • [5] Spacetime quantization from non-Abelian D-particle dynamics -: art. no. 064016
    Mavromatos, NE
    Szabo, RJ
    [J]. PHYSICAL REVIEW D, 1999, 59 (06):
  • [6] GEOMETRY AND FOAMS - 2D DYNAMICS AND 3D STATICS
    AVRON, JE
    LEVINE, D
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (01) : 208 - 211
  • [7] Modelling of 2D flows in complex geometry by the vortex particle method
    Kudela, Henryk
    Malecha, Ziemowit Milosz
    [J]. INZYNIERIA CHEMICZNA I PROCESOWA, 2006, 27 (03): : 707 - 719
  • [8] Matrix D-brane dynamics, logarithmic operators, and quantization of noncommutative spacetime
    Mavromatos, NE
    Szabo, RJ
    [J]. PHYSICAL REVIEW D, 1999, 59 (10) : 1 - 40
  • [9] GEOMETRY OF 2D COMPONENTS
    HINDUJA, S
    CHEN, SJ
    [J]. COMPUTER-AIDED DESIGN, 1987, 19 (06) : 323 - 328
  • [10] Quantization of 2D dilaton gravity theory
    Rivelles, VO
    [J]. TRENDS IN THEORETICAL PHYSICS II, 1999, 484 : 280 - 284