Dual Polarity Ion Confinement and Mobility Separations

被引:7
|
作者
Attah, Isaac K. [1 ]
Garimella, Sandilya V. B. [1 ]
Webb, Ian K. [1 ]
Nagy, Gabe [1 ]
Norheim, Randolph, V [1 ]
Schimelfenig, Colby E. [1 ]
Ibrahim, Yehia M. [1 ]
Smith, Richard D. [1 ]
机构
[1] Pacific Northwest Natl Lab, Biol Sci Div, Richland, WA 99352 USA
关键词
Dual polarity mass spectrometry; Structures for lossless ion manipulations; SLIM; Ion mobility; RESOLUTION MASS-SPECTROMETRY; SONIC SPRAY IONIZATION; LIQUID-CHROMATOGRAPHY; ELECTROSPRAY-IONIZATION; NEGATIVE-IONS; SHOTGUN LIPIDOMICS; BIOLOGICAL SAMPLES; ION/ION REACTIONS; TRAVELING-WAVES; PROTON-TRANSFER;
D O I
10.1007/s13361-019-02138-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Here, we present simulations and describe the initial implementation of a device capable of performing simultaneous ion mobility (IM) separations of positive and negative ions based upon the structures for lossless ion manipulations (SLIM). To achieve dual polarity ion confinement, the DC fields used for lateral confinement in previous SLIM were replaced with RF fields. Concurrent ion transport and mobility separation in the SLIM device are shown possible due to the nature of the traveling wave (TW) voltage profile which has potential minima at opposite sides of the wave for each ion polarity. We explored the potential for performing simultaneous IM separations of cations and anions over the same SLIM path and the impacts on the achievable IM resolution and resolving power. Initial results suggest comparable IM performance with previous single-polarity SLIM separations can be achieved. We also used ion trajectory simulations to investigate the capability to manipulate the spatial distributions of ion populations based on their polarities by biasing the RF fields and TW potentials on each SLIM surface so as to limit the interactions between opposite polarity ions.
引用
收藏
页码:967 / 976
页数:10
相关论文
共 50 条
  • [31] Evaluation of Waveform Profiles for Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations
    Smith, Richard D. (rds@pnnl.gov); Ibrahim, Yehia M. (Yehia.ibrahim@pnnl.gov), 1600, American Chemical Society (32):
  • [32] Differential Ion Mobility Separations/Mass Spectrometry with High Resolution in Both Dimensions
    Baird, Matthew A.
    Anderson, Gordon A.
    Shliaha, Pavel V.
    Jensen, Ole N.
    Shvartsburg, Alexandre A.
    ANALYTICAL CHEMISTRY, 2019, 91 (02) : 1479 - 1485
  • [33] Accelerated High-Resolution Differential Ion Mobility Separations Using Hydrogen
    Shvartsburg, Alexandre A.
    Smith, Richard D.
    ANALYTICAL CHEMISTRY, 2011, 83 (23) : 9159 - 9166
  • [34] Fundamentals and applications of incorporating chromatographic separations with ion mobility-mass spectrometry
    Morrison, Kelsey A.
    Clowers, Brian H.
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2019, 119
  • [35] Multiplatform High-Definition Ion Mobility Separations of the Largest Epimeric Peptides
    Thurman, Hayden A.
    Wijegunawardena, Gayani
    Berthias, Francis
    Williamson, David L.
    Wu, Haifan
    Nagy, Gabe
    Jensen, Ole N.
    Shvartsburg, Alexandre A.
    ANALYTICAL CHEMISTRY, 2024, 96 (06) : 2318 - 2326
  • [36] Enhancing disaccharide ion mobility separations through shift reagents and frequency modulation
    McKenna, Kristin
    Li, Li
    Morrison, Kelsey
    Clowers, Brian
    Fernandez, Facundo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [37] A simulation study of the influence of the traveling wave patterns on ion mobility separations in structures for lossless ion manipulations
    Li, Ailin
    Garimella, Sandilya V. B.
    Ibrahim, Yehia M.
    ANALYST, 2020, 145 (01) : 240 - 248
  • [38] Enhanced Mixture Separations of Metal Adducted Tetrasaccharides Using Frequency Encoded Ion Mobility Separations and Tandem Mass Spectrometry
    Morrison, Kelsey A.
    Bendiak, Brad K.
    Clowers, Brian H.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2017, 28 (04) : 664 - 677
  • [39] Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device
    Bandara, R.
    Khachan, J.
    PHYSICS OF PLASMAS, 2013, 20 (07)
  • [40] ION EXCHANGE SEPARATIONS - CHROMATOGRAPHIC SEPARATIONS BASED ON ION CHARGE
    FRITZ, JS
    KARRAKER, SK
    ANALYTICAL CHEMISTRY, 1959, 31 (05) : 921 - 923