Stress-constrained topology optimization: a topological level-set approach

被引:51
|
作者
Suresh, Krishnan [1 ]
Takalloozadeh, Meisam [2 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] Sharif Univ Technol, Tehran, Iran
关键词
Topology optimization; Stress; Level set; CONTINUUM STRUCTURES; SENSITIVITY-ANALYSIS; SHAPE; CODE;
D O I
10.1007/s00158-013-0899-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The objective of this paper is to introduce and demonstrate an algorithm for stress-constrained topology optimization. The algorithm relies on tracking a level-set defined via the topological derivative. The primary advantages of the proposed method are: (1) the stresses are well-defined at all points within the evolving topology, (2) the finite-element stiffness matrices are well-conditioned, making the analysis robust and efficient, (3) the level-set is tracked through a simple iterative process, and (4) the stress constraint is precisely satisfied at termination. The proposed algorithm is illustrated through numerical experiments in 2D and 3D.
引用
收藏
页码:295 / 309
页数:15
相关论文
共 50 条
  • [21] A maximum-rectifier-function approach to stress-constrained topology optimization
    Julián A. Norato
    Hollis A. Smith
    Joshua D. Deaton
    Raymond M. Kolonay
    Structural and Multidisciplinary Optimization, 2022, 65
  • [22] A maximum-rectifier-function approach to stress-constrained topology optimization
    Norato, Julian A.
    Smith, Hollis A.
    Deaton, Joshua D.
    Kolonay, Raymond M.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2022, 65 (10)
  • [23] Stress constrained thermo-elastic topology optimization with varying temperature fields via augmented topological sensitivity based level-set
    Deng, Shiguang
    Suresh, Krishnan
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2017, 56 (06) : 1413 - 1427
  • [24] Stress constrained thermo-elastic topology optimization with varying temperature fields via augmented topological sensitivity based level-set
    Shiguang Deng
    Krishnan Suresh
    Structural and Multidisciplinary Optimization, 2017, 56 : 1413 - 1427
  • [25] A parametric level-set approach for topology optimization of flow domains
    Georg Pingen
    Matthias Waidmann
    Anton Evgrafov
    Kurt Maute
    Structural and Multidisciplinary Optimization, 2010, 41 : 117 - 131
  • [26] A parametric level-set approach for topology optimization of flow domains
    Pingen, Georg
    Waidmann, Matthias
    Evgrafov, Anton
    Maute, Kurt
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 41 (01) : 117 - 131
  • [27] Stress-constrained topology optimization based on maximum stress measures
    Yang, Dixiong
    Liu, Hongliang
    Zhang, Weisheng
    Li, Shi
    COMPUTERS & STRUCTURES, 2018, 198 : 23 - 39
  • [28] Adaptive mesh refinement in stress-constrained topology optimization
    Miguel A. Salazar de Troya
    Daniel A. Tortorelli
    Structural and Multidisciplinary Optimization, 2018, 58 : 2369 - 2386
  • [29] Transient stress-constrained topology optimization of impacted structures
    Chao Wang
    E. L. Zhou
    Yi Wu
    Eric Li
    Y. Y. Huang
    Structural and Multidisciplinary Optimization, 2023, 66
  • [30] Stress-constrained topology optimization for compliant mechanism design
    Daniel M. De Leon
    Joe Alexandersen
    Jun S. O. Fonseca
    Ole Sigmund
    Structural and Multidisciplinary Optimization, 2015, 52 : 929 - 943