Homogeneity Test of Multi-Sample Covariance Matrices in High Dimensions

被引:0
|
作者
Sun, Peng [1 ,2 ,3 ]
Tang, Yincai [1 ,2 ]
Cao, Mingxiang [4 ]
机构
[1] East China Normal Univ, Dept Stat, Shanghai 200062, Peoples R China
[2] East China Normal Univ, Sch Stat, KLATASDS MOE, Shanghai 200062, Peoples R China
[3] Duke NUS Med Sch, Ctr Quantitat Med, Singapore 169857, Singapore
[4] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Anhui, Peoples R China
关键词
high-dimensional data; weighted Frobenius norm; homogeneity test; martingale central limit theorem; asymptotic distributions; CLASSIFICATION; EQUALITY;
D O I
10.3390/math10224339
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new test statistic based on the weighted Frobenius norm of covariance matrices is proposed to test the homogeneity of multi-group population covariance matrices. The asymptotic distributions of the proposed test under the null and the alternative hypotheses are derived, respectively. Simulation results show that the proposed test procedure tends to outperform some existing test procedures.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] A bi-aspect nonparametric test for the multi-sample location problem
    Marozzi, M
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 46 (01) : 81 - 92
  • [42] EMPIRICAL POWER STUDY OF A MULTI-SAMPLE TEST OF EXPONENTIALITY BASED ON SPACINGS
    BALAKRISHNAN, N
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1983, 18 (04) : 265 - 271
  • [43] A high dimensional nonparametric test for proportional covariance matrices
    Xu, Kai
    Tian, Yan
    He, Daojiang
    JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 184
  • [44] Tests for covariance matrices in high dimension with less sample size
    Srivastava, Muni S.
    Yanagihara, Hirokazu
    Kubokawa, Tatsuya
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 130 : 289 - 309
  • [45] TWO SAMPLE TESTS FOR HIGH-DIMENSIONAL COVARIANCE MATRICES
    Li, Jun
    Chen, Song Xi
    ANNALS OF STATISTICS, 2012, 40 (02): : 908 - 940
  • [46] Two-sample test for high-dimensional covariance matrices: A normal-reference approach
    Wang, Jingyi
    Zhu, Tianming
    Zhang, Jin-Ting
    JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 204
  • [47] Multi-Task Multi-Sample Learning
    Aytar, Yusuf
    Zisserman, Andrew
    COMPUTER VISION - ECCV 2014 WORKSHOPS, PT III, 2015, 8927 : 78 - 91
  • [48] Multi-sample test based on bootstrap methods for second order stochastic dominance
    Zhang, Jianling
    Zhang, Zhongzhan
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (02): : 503 - 512
  • [49] A GENERALIZED DISTANCE MULTI-SAMPLE TEST OF NORMALITY WITH APPLICATIONS TO PROCESS-CONTROL
    SPURRIER, JD
    WILSON, J
    PARK, JW
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1989, 18 (02) : 553 - 569
  • [50] Multi-sample negative ion source
    Gelbart, WZ
    Johnson, RR
    Paul, M
    Shahar, Y
    Schubank, RB
    Cifarelli, F
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1996, 67 (03): : 1230 - 1232