Assessment of statistical methods from single cell, bulk RNA-seq, and metagenomics applied to microbiome data

被引:58
|
作者
Calgaro, Matteo [1 ]
Romualdi, Chiara [2 ]
Waldron, Levi [3 ,4 ]
Risso, Davide [5 ]
Vitulo, Nicola [1 ]
机构
[1] Univ Verona, Dept Biotechnol, Verona, Italy
[2] Univ Padua, Dept Biol, Padua, Italy
[3] CUNY, Grad Sch Publ Hlth & Hlth Policy, New York, NY 10021 USA
[4] CUNY, Inst Implementat Sci Publ Hlth, New York, NY 10021 USA
[5] Univ Padua, Dept Stat Sci, Padua, Italy
基金
美国国家卫生研究院;
关键词
Microbiome; Benchmark; Single-cell; Metagenomics; Differential abundance; BACTERIAL DIVERSITY; SUPRAGINGIVAL;
D O I
10.1186/s13059-020-02104-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundThe correct identification of differentially abundant microbial taxa between experimental conditions is a methodological and computational challenge. Recent work has produced methods to deal with the high sparsity and compositionality characteristic of microbiome data, but independent benchmarks comparing these to alternatives developed for RNA-seq data analysis are lacking.ResultsWe compare methods developed for single-cell and bulk RNA-seq, and specifically for microbiome data, in terms of suitability of distributional assumptions, ability to control false discoveries, concordance, power, and correct identification of differentially abundant genera. We benchmark these methods using 100 manually curated datasets from 16S and whole metagenome shotgun sequencing.ConclusionsThe multivariate and compositional methods developed specifically for microbiome analysis did not outperform univariate methods developed for differential expression analysis of RNA-seq data. We recommend a careful exploratory data analysis prior to application of any inferential model and we present a framework to help scientists make an informed choice of analysis methods in a dataset-specific manner.
引用
下载
收藏
页数:31
相关论文
共 50 条
  • [31] Modeling group heteroscedasticity in single-cell RNA-seq pseudo-bulk data
    You, Yue
    Dong, Xueyi
    Wee, Yong Kiat
    Maxwell, Mhairi J.
    Alhamdoosh, Monther
    Smyth, Gordon K.
    Hickey, Peter F.
    Ritchie, Matthew E.
    Law, Charity W.
    GENOME BIOLOGY, 2023, 24 (01)
  • [32] TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data
    Song, Li
    Cohen, David
    Ouyang, Zhangyi
    Cao, Yang
    Hu, Xihao
    Liu, X. Shirley
    NATURE METHODS, 2021, 18 (06) : 627 - +
  • [33] Nimble: A novel tool to maximize and augment information from bulk and single-cell RNA-seq data
    Benjamin, Sebastian
    McElfresh, G. W.
    Boggy, Gregory J.
    Feltham, Shana
    Mahyari, Eisa
    Hansen, Scott G.
    Picker, Louis J.
    Bimber, Benjamin N.
    JOURNAL OF MEDICAL PRIMATOLOGY, 2023, 52 (05) : 317 - 318
  • [34] powsimR: power analysis for bulk and single cell RNA-seq experiments
    Vieth, Beate
    Ziegenhain, Christoph
    Parekh, Swati
    Enard, Wolfgang
    Hellmann, Ines
    BIOINFORMATICS, 2017, 33 (21) : 3486 - 3488
  • [35] TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data
    Li Song
    David Cohen
    Zhangyi Ouyang
    Yang Cao
    Xihao Hu
    X. Shirley Liu
    Nature Methods, 2021, 18 : 627 - 630
  • [36] Differential transcript usage analysis of bulk and single-cell RNA-seq data with DTUrtle
    Tekath, Tobias
    Dugas, Martin
    BIOINFORMATICS, 2021, 37 (21) : 3781 - 3787
  • [37] Modeling group heteroscedasticity in single-cell RNA-seq pseudo-bulk data
    Yue You
    Xueyi Dong
    Yong Kiat Wee
    Mhairi J. Maxwell
    Monther Alhamdoosh
    Gordon K. Smyth
    Peter F. Hickey
    Matthew E. Ritchie
    Charity W. Law
    Genome Biology, 24
  • [38] Emerging deep learning methods for single-cell RNA-seq data analysis
    Zheng, Jie
    Wang, Ke
    QUANTITATIVE BIOLOGY, 2019, 7 (04) : 247 - 254
  • [39] Comparison of methods and resources for cell-cell communication inference from single-cell RNA-Seq data
    Daniel Dimitrov
    Dénes Türei
    Martin Garrido-Rodriguez
    Paul L. Burmedi
    James S. Nagai
    Charlotte Boys
    Ricardo O. Ramirez Flores
    Hyojin Kim
    Bence Szalai
    Ivan G. Costa
    Alberto Valdeolivas
    Aurélien Dugourd
    Julio Saez-Rodriguez
    Nature Communications, 13
  • [40] Crafted experiments to evaluate feature selection methods for single cell RNA-seq data
    Liu, Siyao
    Corcoran, David
    Garcia-Recio, Susana
    Perou, Charles
    Marron, J. S.
    CANCER RESEARCH, 2024, 84 (07)