Multipath Ghost Target Identification for Automotive MIMO Radar

被引:9
|
作者
Li, Yunda [1 ]
Shang, Xiaolei [1 ]
机构
[1] Univ Sci & Technol China, Dept EEIS, Hefei, Anhui, Peoples R China
关键词
Automotive MIMO radar; multipath; ghost target identification; multipath-iterative adaptive approach (MP-IAA); triangle relationship;
D O I
10.1109/VTC2022-Fall57202.2022.10012904
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider the problem of angle estimation and ghost target identification for automotive multiple-input multiple-output (MIMO) radar in multipath scenarios. Firstly, we establish the multipath propagation model for the case of horizental MIMO arrays, and divide the multipath into two categories, i.e., Type 1: multipath with direction-of-arrival (DOA) not equal direction-of-departure (DOD); Type 2: multipath with DOA=DOD. In the presence of multipath, the different DOA and DOD angles corrupt the notion of virtual array for MIMO radar, making angle estimation a major challenge. To jointly estimate the DOA and DOD of the target reflections, including both the direct path and multipath scenarios, we introduce a multipath iterative adaptive approach (MP-IAA), which possesses the super resolution, low sidelobe level, and robust properties for DOA and DOD estimation. Then, the Type 1 multipath with DOA not equal DOD can be directly identified based on the MP-IAA's DOA and DOD estimates. Regarding to the Type 2 multipath with DOA=DOD, we solve the triangle relationships to identify the corresponding ghost targets. Numerical examples are provided to demonstrate the effectiveness of the proposed algorithm for angle estimation and ghost target identification using automotive MIMO radar.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Comparative Analysis of Two Approaches for Multipath Ghost Suppression in Radar Imaging
    Gennarelli, G.
    Vivone, G.
    Braca, P.
    Soldovieri, F.
    Amin, M. G.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (09) : 1226 - 1230
  • [42] Using Machine Learning to Detect Ghost Images in Automotive Radar
    Kraus, Florian
    Scheiner, Nicolas
    Ritter, Werner
    Dietmayer, Klaus
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [43] Phase Synchronization at Target in MIMO Radar
    Xie, Ning
    Zhang, Li
    Wang, Hui
    2014 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2014, : 37 - 41
  • [44] Monopulse MIMO Radar for Target Tracking
    Gogineni, Sandeep
    Nehorai, Arye
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2011, 47 (01) : 755 - 768
  • [45] Polarimetric MIMO Radar Target Detection
    Zhou, Shenghua
    Zhang, Xinxun
    Liu, Hongwei
    Zhao, Yongbo
    2016 CIE INTERNATIONAL CONFERENCE ON RADAR (RADAR), 2016,
  • [46] Target Characterization Using MIMO Radar
    Sur, Samarendra Nath
    Bera, Soumyasree
    Shome, Subhankar
    Bera, Rabindranath
    Maji, Bansibadan
    INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, 2020, 13 (01): : 1 - 8
  • [47] Massive MIMO Radar for Target Detection
    Fortunati, Stefano
    Sanguinetti, Luca
    Gini, Fulvio
    Greco, Maria Sabrina
    Himed, Braham
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 (68) : 859 - 871
  • [48] A High Bandwidth Radar Target Simulator for Automotive Radar Sensors
    Engelhardt, Maximilian
    Pfeiffer, Florian
    Biebl, Erwin
    2016 13TH EUROPEAN RADAR CONFERENCE (EURAD), 2016, : 245 - 248
  • [49] MIMO through-wall-radar down-view imaging for moving target with ground ghost suppression
    Zhang, Wei
    Xu, Zihan
    Guo, Shisheng
    Jia, Yong
    Wang, Lingyu
    He, Tao
    Shao, Huaizong
    DIGITAL SIGNAL PROCESSING, 2023, 134
  • [50] Compressed Sensing for Near Range MIMO Radar in Multipath Environment
    Azodi, Hossein
    Siart, Uwe
    Eibert, Thomas F.
    2014 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2014, : 486 - 487