Kirkman triple systems of order 21 with nontrivial automorphism group

被引:0
|
作者
Cohen, MB [1 ]
Colbourn, CJ
Ives, LA
Ling, ACH
机构
[1] Univ Auckland, Dept Comp Sci, Auckland, New Zealand
[2] Arizona State Univ, Dept Comp Sci & Engn, Tempe, AZ 85287 USA
[3] Univ Vermont, Dept Math & Stat, Burlington, VT 05405 USA
[4] Univ Vermont, Dept Comp Sci, Burlington, VT 05405 USA
关键词
Kirkman triple system; doubly resolvable design; Steiner triple system; constructive enumeration;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There are 50,024 Kirkman triple systems of order 21 admitting an automorphism of order 2. There are 13,280 Kirkman triple systems of order 21 admitting an automorphism of order 3. Together with the 192 known systems and some simple exchange operations, this leads to a collection of 63,745 nonisomorphic Kirkman triple systems of order 21. This includes all KTS(21)s having a nontrivial automorphism group. None of these is doubly resolvable. Four are quadrilateral-free, providing the first examples of such a KTS(21).
引用
收藏
页码:873 / 881
页数:9
相关论文
共 50 条
  • [31] Special overlarge sets of Kirkman triple systems
    Xu, Juanjuan
    Ji, Lijun
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (08) : 2267 - 2285
  • [32] The Intersection Numbers of Nearly Kirkman Triple Systems
    Bing Li FAN
    Zhong Hao JIANG
    Acta Mathematica Sinica,English Series, 2016, (12) : 1430 - 1450
  • [33] Doubly Resolvable Nearly Kirkman Triple Systems
    Abel, R. Julian R.
    Chan, Nigel
    Colbourn, Charles J.
    Lamken, E. R.
    Wang, Chengmin
    Wang, Jinhua
    JOURNAL OF COMBINATORIAL DESIGNS, 2013, 21 (08) : 342 - 358
  • [34] Further results on transitive Kirkman triple systems
    Lei, JG
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 51 (02) : 189 - 194
  • [35] The intersection numbers of nearly Kirkman triple systems
    Bing Li Fan
    Zhong Hao Jiang
    Acta Mathematica Sinica, English Series, 2016, 32 : 1430 - 1450
  • [36] On the existence of nearly Kirkman triple systems with subsystems
    Dameng Deng
    Rolf Rees
    Hao Shen
    Designs, Codes and Cryptography, 2008, 48 : 17 - 33
  • [37] ON ORDER OF AUTOMORPHISM GROUP OF A FINITE GROUP
    HYDE, KH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 210 - &
  • [39] ON THE ORDER OF THE AUTOMORPHISM GROUP OF A FINITE GROUP
    Curran, John
    Heffernan, Robert
    MacHale, Des
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (10) : 3616 - 3624
  • [40] Sparse Steiner triple systems of order 21
    Kokkala, Janne I.
    Ostergard, Patric R. J.
    JOURNAL OF COMBINATORIAL DESIGNS, 2021, 29 (02) : 75 - 83