On the Spectrum of Mutually r-orthogonal Idempotent Latin Squares

被引:0
|
作者
Xu, Yun-qing [1 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Latin square; r-orthogonal; idempotent;
D O I
10.1007/s10255-015-0507-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two Latin squares of order v are r-orthogonal if their superposition produces exactly r distinct ordered pairs. The two squares are said to be r-orthogonal idempotent Latin squares and denoted by r-MOILS(v) if they are all idempotent. In this paper, we show that for any integer v >= 28, there exists an r-MOILS(v) if and only if r is an element of [v, v(2)] \ {v + 1, v(2) - 1}.
引用
收藏
页码:813 / 822
页数:10
相关论文
共 50 条
  • [31] Embedding partial Latin squares in Latin squares with many mutually orthogonal mates
    Donovan, Diane
    Grannell, Mike
    Yazici, Emine Sule
    [J]. DISCRETE MATHEMATICS, 2020, 343 (06)
  • [32] ON THE EXISTENCE OF INCOMPLETE CONJUGATE ORTHOGONAL IDEMPOTENT LATIN SQUARES
    BENNETT, FE
    ZHU, L
    [J]. ARS COMBINATORIA, 1985, 20A : 193 - 210
  • [33] Construction of Mutually Unbiased Bases Using Mutually Orthogonal Latin Squares
    Yi-yang Song
    Gui-jun Zhang
    Ling-shan Xu
    Yuan-hong Tao
    [J]. International Journal of Theoretical Physics, 2020, 59 : 1777 - 1787
  • [34] Construction of Mutually Unbiased Bases Using Mutually Orthogonal Latin Squares
    Song, Yi-yang
    Zhang, Gui-jun
    Xu, Ling-shan
    Tao, Yuan-hong
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (06) : 1777 - 1787
  • [35] Mutually nearly orthogonal Latin squares of order 6
    Pasles, EB
    Raghavarao, D
    [J]. UTILITAS MATHEMATICA, 2004, 65 : 65 - 72
  • [36] Further results on mutually nearly orthogonal Latin squares
    Ke-jun Chen
    Yong Zhang
    Guang-zhou Chen
    Wen Li
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 209 - 220
  • [37] SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES WITH LIKE SUBSQUARES
    ROBERTS, CE
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1992, 61 (01) : 50 - 63
  • [38] Mutually orthogonal latin squares based on cellular automata
    Mariot, Luca
    Gadouleau, Maximilien
    Formenti, Enrico
    Leporati, Alberto
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (02) : 391 - 411
  • [39] 4 MUTUALLY ORTHOGONAL LATIN SQUARES OF ORDER 20
    TODOROV, DT
    [J]. ARS COMBINATORIA, 1989, 27 : 63 - 65
  • [40] Mutually orthogonal latin squares based on cellular automata
    Luca Mariot
    Maximilien Gadouleau
    Enrico Formenti
    Alberto Leporati
    [J]. Designs, Codes and Cryptography, 2020, 88 : 391 - 411