ROBUST POSITIONING IN NLOS ENVIRONMENTS USING NONPARAMETRIC ADAPTIVE KERNEL DENSITY ESTIMATION

被引:0
|
作者
Yin, Feng [1 ]
Zoubir, Abdelhak M. [1 ]
机构
[1] Tech Univ Darmstadt, Signal Proc Grp, D-64283 Darmstadt, Germany
关键词
Non-line-of-sight (NLOS) mitigation; nonparametric; adaptive kernel density estimation; robust positioning;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The problem of locating a mobile station in a wireless network has been extensively investigated due to the growing need for reliable location-based services. In non-line-of-sight environments, the positioning accuracy of classical least-squares based solutions is inaccurate. In order to mitigate the effect induced by non-line-of-sight errors, we address a novel robust nonparametric approach. Herein, we first estimate the range error distribution using nonparametric adaptive kernel density estimation and then optimize the approximate log-likelihood function via a quasi-Newton method. In simulations, the proposed approach shows improved positioning accuracy when the non-line-of-sight contamination is high as compared to several other competitors. Furthermore, it requires only a small amount of computational time.
引用
收藏
页码:3517 / 3520
页数:4
相关论文
共 50 条
  • [21] Background and foreground modeling using nonparametric kernel density estimation for visual surveillance
    Elgammal, A
    Duraiswami, R
    Harwood, D
    Davis, LS
    PROCEEDINGS OF THE IEEE, 2002, 90 (07) : 1151 - 1163
  • [22] Nonparametric localized bandwidth selection for Kernel density estimation
    Cheng, Tingting
    Gao, Jiti
    Zhang, Xibin
    ECONOMETRIC REVIEWS, 2019, 38 (07) : 733 - 762
  • [23] Nonparametric density estimation based on beta prime kernel
    Ercelik, Elif
    Nadar, Mustafa
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (02) : 325 - 342
  • [24] Efficient On-Line Nonparametric Kernel Density Estimation
    C. G. Lambert
    S. E. Harrington
    C. R. Harvey
    A. Glodjo
    Algorithmica, 1999, 25 : 37 - 57
  • [25] Improved probe selection for DNA arrays using nonparametric kernel density estimation
    Fu, Qi
    Borneman, James
    Ye, Jingxiao
    Chrobak, Marek
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 902 - 905
  • [26] Efficient on-line nonparametric kernel density estimation
    Lambert, CG
    Harrington, SE
    Harvey, CR
    Glodjo, A
    ALGORITHMICA, 1999, 25 (01) : 37 - 57
  • [27] Probit transformation for nonparametric kernel estimation of the copula density
    Geenens, Gery
    Charpentier, Arthur
    Paindaveine, Davy
    BERNOULLI, 2017, 23 (03) : 1848 - 1873
  • [28] Toward adaptive robust state estimation based on MCC by using the generalized Gaussian density as kernel functions
    Chen, Yanbo
    Liu, Feng
    Mei, Shengwei
    Ma, Jin
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2015, 71 : 297 - 304
  • [29] Robust resistance to noise and outliers: Screened Poisson Surface Reconstruction using adaptive kernel density estimation
    Xu, Ziqi
    Xu, Chao
    Hu, Jing
    Meng, Zhaopeng
    COMPUTERS & GRAPHICS-UK, 2021, 97 (97): : 19 - 27
  • [30] Nonparametric Bayesian online change point detection using kernel density estimation with nonparametric hazard function
    Prabpon, Naruesorn
    Homsud, Kitakorn
    Vatiwutipong, Pat
    STATISTICS AND COMPUTING, 2024, 34 (02)