Defect Engineering in Manganese-Based Oxides for Aqueous Rechargeable Zinc-Ion Batteries: A Review

被引:335
|
作者
Xiong, Ting [1 ,2 ,3 ]
Zhang, Yaoxin [1 ]
Lee, Wee Siang Vincent [1 ]
Xue, Junmin [1 ]
机构
[1] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117573, Singapore
[2] Natl Univ Singapore, Ctr Adv 2D Mat, Singapore 117546, Singapore
[3] Natl Univ Singapore, Graphene Res Ctr, Singapore 117546, Singapore
关键词
defect engineering; manganese-based oxides; zinc ion batteries; HIGH-CAPACITY; PROMISING CATHODE; STORAGE; ALPHA-MNO2; CHALLENGES; MNO2; NANOPARTICLES; BIRNESSITE; CHEMISTRY; MECHANISM;
D O I
10.1002/aenm.202001769
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of advanced cathode materials for aqueous the zinc ion battery (ZIB) represents a crucial step toward building future large-scale green energy conversion and storage systems. Recently, significant progress has been achieved in the development of manganese-based oxides for ZIB via defect engineering, whereby the intrinsic capacity and energy density have been enhanced. In this review, an overview of the recent progress in the defect engineering of manganese-based oxides for aqueous ZIBs is summarized in the following order: 1) the structures and properties of the commonly used manganese-based oxides, 2) the classification of the various types of defect engineering commonly reported, 3) the various strategies used to create defects in materials, and 4) the effects of the various types of defect engineering on the electrochemical performance of manganese-based oxides. Finally, a perspective on the defect engineering of manganese-based oxides is proposed to further enhance their electrochemical performance as a ZIB cathode.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Recent Advances in Vanadium-Based Aqueous Rechargeable Zinc-Ion Batteries
    Liu, Shude
    Kang, Ling
    Kim, Jong Min
    Chun, Young Tea
    Zhang, Jian
    Jun, Seong Chan
    ADVANCED ENERGY MATERIALS, 2020, 10 (25)
  • [32] Development of vanadium oxides as cathodes in aqueous zinc-ion batteries: A mini review
    Jin, Hao
    Li, Rong
    Zhu, Limin
    Qiu, Xuejing
    Yang, Xinli
    Xie, Lingling
    Yi, Lanhua
    Cao, Xiaoyu
    ELECTROCHEMISTRY COMMUNICATIONS, 2024, 159
  • [33] Anode Modification of Aqueous Rechargeable Zinc-Ion Batteries for Preventing Dendrite Growth: A Review
    Li, Yanlin
    Chen, Shenghua
    Duan, Wenyuan
    Nan, Yanli
    Ding, Donghai
    Xiao, Guoqing
    ENERGY TECHNOLOGY, 2024, 12 (02)
  • [34] Potassium-Ion-Doped Manganese Oxides and Kaolinite Electrolyte Additives for Aqueous Zinc-Ion Batteries
    Li, Wentao
    Qin, Liping
    Liu, Zhexuan
    Li, Lijun
    Li, Wenbo
    Fang, Guozhao
    ACS APPLIED NANO MATERIALS, 2024, 7 (08) : 9720 - 9729
  • [35] A concentrated electrolyte for zinc hexacyanoferrate electrodes in aqueous rechargeable zinc-ion batteries
    Kim, D.
    Lee, C.
    Jeong, S.
    2017 2ND INTERNATIONAL CONFERENCE ON INNOVATIVE ENGINEERING MATERIALS (ICIEM 2017), 2018, 284
  • [36] Comparative Review on the Aqueous Zinc-Ion Batteries (AZIBs) and Flexible Zinc-Ion Batteries (FZIBs)
    Al-Amin, Md
    Islam, Saiful
    Shibly, Sayed Ul Alam
    Iffat, Samia
    NANOMATERIALS, 2022, 12 (22)
  • [37] A review on covalent organic frameworks for rechargeable zinc-ion batteries
    Zhao, Yunyu
    Yang, Chuntao
    Yu, Yingjian
    CHINESE CHEMICAL LETTERS, 2024, 35 (07)
  • [38] Synthesis of manganese-based complex as cathode material for aqueous rechargeable batteries
    Qiu, Nan
    Chen, Hong
    Yang, Zhaoming
    Sun, Sen
    Wang, Yuan
    RSC ADVANCES, 2018, 8 (28): : 15703 - 15708
  • [39] Rechargeable zinc-ion batteries with manganese dioxide cathode: How critical is choice of manganese dioxide polymorphs in aqueous solutions?
    Siamionau, Uladzislau
    Aniskevich, Yauhen
    Mazanik, Alexander
    Kokits, Olga
    Ragoisha, Genady
    Jo, Jae Hyeon
    Myung, Seung-Taek
    Streltsov, Eugene
    JOURNAL OF POWER SOURCES, 2022, 523
  • [40] A review on covalent organic frameworks for rechargeable zinc-ion batteries
    Yunyu Zhao
    Chuntao Yang
    Yingjian Yu
    Chinese Chemical Letters, 2024, 35 (07) : 133 - 146