Direct band gap structures on nanometer-scale, micromachined silicon tips

被引:2
|
作者
Shealy, JR
Macdonald, NC
Xu, Y
Whittingham, KL
Emerson, DT
Pitts, BL
机构
[1] School of Electrical Engineering, Cornell University, Ithaca
[2] Lucent Technologies, Orlando
[3] Motorola, Tempe
关键词
D O I
10.1063/1.119200
中图分类号
O59 [应用物理学];
学科分类号
摘要
The selective deposition of compound semiconductors on single crystal silicon tip arrays produces optical quality, direct band gap materials on the silicon nanostructures. We demonstrate using the organometallic vapor phase epitaxy of GaInP that the direct band gap semiconductor nucleates selectively on the silicon tips. The structural properties of the tips (whose radius of curvature is approximately 10-20 nm) are unaltered by this chemical vapor deposition process. Furthermore, intense band edge emission from the GaInP is observed with an external electron beam or laser stimulation indicating a good crystal quality for the three dimensional epitaxial structures. (C) 1997 American Institute of Physics.
引用
收藏
页码:3458 / 3460
页数:3
相关论文
共 50 条
  • [31] HARDNESS DEMONSTRATION OF DIAMOND TIPS BY NANOMETER-SCALE CONTROLLED SCRATCHING ON METALLIC SURFACES
    CHU, X
    MA, Z
    LIU, N
    CHANG, ZP
    HU, TM
    XUE, ZQ
    PANG, SJ
    APPLIED PHYSICS LETTERS, 1993, 63 (25) : 3446 - 3448
  • [32] Nanometer-scale height measurements in micromachined picoliter vials based on interference fringe analysis
    van den Doel, LR
    van Vliet, LJ
    Hjelt, KT
    Vellekoop, MJ
    Gromball, F
    Korvink, JG
    Young, IT
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING, 2000, : 53 - 58
  • [33] Formation of nanometer-scale gap electrodes based on a plasma ashing technique
    Lee, Younghun
    Roh, Yonghan
    Kim, Kyoung Seob
    THIN SOLID FILMS, 2006, 515 (02) : 744 - 747
  • [34] Formation of nanometer-scale structures using conventional optical lithography
    Kim, Kyoung S.
    Lee, Kyoung Nam
    Roh, Yonghan
    THIN SOLID FILMS, 2008, 516 (07) : 1489 - 1492
  • [35] Spatially Resolved Detection of a Nanometer-Scale Gap by Scanning Electrochemical Microscopy
    Kim, Eunkyoung
    Kim, Jiyeon
    Amemiya, Shigeru
    ANALYTICAL CHEMISTRY, 2009, 81 (12) : 4788 - 4791
  • [36] Epitaxy controlled by self-assembled nanometer-scale structures
    Parker, TM
    Wilson, LK
    Condon, NG
    Leibsle, FM
    PHYSICAL REVIEW B, 1997, 56 (11): : 6458 - 6461
  • [37] Fabrication of Nanometer-scale Pillar Structures by Using Nanosphere Lithography
    Yang, Ji Won
    Sim, Jae In
    An, Ho Myoung
    Kim, Tae Geun
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2011, 58 (04) : 994 - 997
  • [38] Accurate and fast estimation of junction band-to-band leakage in nanometer-scale MOSFET
    Luo, Hong
    Yang, Huazhong
    Luo, Rong
    2006 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS, 2006, : 956 - +
  • [39] GROWTH OF SINGLE DIAMOND CRYSTALLITES AROUND NANOMETER-SCALE SILICON WIRES
    DENNIG, PA
    LIU, HI
    STEVENSON, DA
    PEASE, RFW
    APPLIED PHYSICS LETTERS, 1995, 67 (07) : 909 - 911
  • [40] Optically trapped probes with nanometer-scale tips for femto-Newton force measurement
    Pollard, M. R.
    Botchway, S. W.
    Chichkov, B.
    Freeman, E.
    Halsall, R. N. J.
    Jenkins, D. W. K.
    Loader, I.
    Ovsianikov, A.
    Parker, A. W.
    Stevens, R.
    Turchetta, R.
    Ward, A. D.
    Towrie, M.
    NEW JOURNAL OF PHYSICS, 2010, 12